Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (1): 37-41.doi: 10.3760/cma.j.cn371439-20220930-00007
• Reviews • Previous Articles Next Articles
Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang()
Received:
2022-09-30
Revised:
2022-11-23
Online:
2023-01-08
Published:
2023-03-16
Contact:
Li Xiaojiang
E-mail:zxqlovelxj@126.com
Supported by:
Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang. Treatment status of non-small cell lung cancer with METexon14 skipping mutation[J]. Journal of International Oncology, 2023, 50(1): 37-41.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC[J]. Nat Rev Cancer, 2017, 17(11): 637-658. DOI: 10.1038/nrc.2017.84.
doi: 10.1038/nrc.2017.84 pmid: 29068003 |
[3] |
Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer[J]. Nat Med, 2021, 27(8): 1345-1356. DOI: 10.1038/s41591-021-01450-2.
doi: 10.1038/s41591-021-01450-2 pmid: 34385702 |
[4] |
Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: current status and perspectives[J]. Crit Rev Oncol Hematol, 2021, 157: 103194. DOI: 10.1016/j.critrevonc.2020.103194.
doi: 10.1016/j.critrevonc.2020.103194 |
[5] |
Bylicki O, Paleiron N, Assié JB, et al. Targeting the MET-signaling pathway in non-small-cell lung cancer: evidence to date[J]. Onco Targets Ther, 2020, 13: 5691-5706. DOI: 10.2147/OTT.S219959.
doi: 10.2147/OTT.S219959 |
[6] |
Guo R, Luo J, Chang J, et al. MET-dependent solid tumours—molecular diagnosis and targeted therapy[J]. Nat Rev Clin Oncol, 2020, 17(9): 569-587. DOI: 10.1038/s41571-020-0377-z.
doi: 10.1038/s41571-020-0377-z |
[7] |
Huang C, Zou Q, Liu H, et al. Management of non-small cell lung cancer patients with MET exon 14 skipping mutations[J]. Curr Treat Options Oncol, 2020, 21(4): 33. DOI: 10.1007/s11864-020-0723-5.
doi: 10.1007/s11864-020-0723-5 |
[8] |
Zheng Y, Fu Y, Zhong Q, et al. The treatment of advanced pulmonary sarcomatoid carcinoma[J]. Future Oncol, 2022, 18(6): 727-738. DOI: 10.2217/fon-2021-1071.
doi: 10.2217/fon-2021-1071 |
[9] |
Cortot AB, Kherrouche Z, Descarpentries C, et al. Exon 14 deleted MET receptor as a new biomarker and target in cancers[J]. J Natl Cancer Inst, 2017, 109(5): djw262. DOI: 10.1093/jnci/djw262.
doi: 10.1093/jnci/djw262 |
[10] |
Vuong HG, Ho ATN, Altibi AMA, et al. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer —a systematic review and meta-analysis[J]. Lung Cancer, 2018, 123: 76-82. DOI: 10.1016/j.lungcan.2018.07.006.
doi: S0169-5002(18)30464-1 pmid: 30089599 |
[11] |
Bittoni M, Yang JC, Shih JY, et al. Real-world insights into patients with advanced NSCLC and MET alterations[J]. Lung Cancer, 2021, 159: 96-106. DOI: 10.1016/j.lungcan.2021.06.015.
doi: 10.1016/j.lungcan.2021.06.015 pmid: 34320421 |
[12] |
Xu Z, Li H, Dong Y, et al. Incidence and PD-L1 expression of MET 14 skipping in Chinese population: a non-selective NSCLC cohort study using RNA-based sequencing[J]. Onco Targets Ther, 2020, 13: 6245-6253. DOI: 10.2147/OTT.S241231.
doi: 10.2147/OTT.S241231 |
[13] |
Sabari JK, Leonardi GC, Shu CA, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers[J]. Ann Oncol, 2018, 29(10): 2085-2091. DOI: 10.1093/annonc/mdy334.
doi: S0923-7534(19)34207-3 pmid: 30165371 |
[14] |
Kron A, Scheffler M, Heydt C, et al. Genetic heterogeneity of MET-aberrant NSCLC and its impact on the outcome of immunotherapy[J]. J Thorac Oncol, 2021, 16(4): 572-582. DOI: 10.1016/j.jtho.2020.11.017.
doi: 10.1016/j.jtho.2020.11.017 pmid: 33309988 |
[15] |
D'Angelo A, Sobhani N, Chapman R, et al. Focus on ROS1-positive non-small cell lung cancer (NSCLC): crizotinib, resistance mechanisms and the newer generation of targeted therapies[J]. Cancers (Basel), 2020, 12(11): 3293. DOI: 10.3390/cancers12113293.
doi: 10.3390/cancers12113293 |
[16] |
Drilon A, Clark JW, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration[J]. Nat Med, 2020, 26(1): 47-51. DOI: 10.1038/s41591-019-0716-8.
doi: 10.1038/s41591-019-0716-8 pmid: 31932802 |
[17] |
Moro-Sibilot D, Cozic N, Pérol M, et al. Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSé phase Ⅱ trial[J]. Ann Oncol, 2019, 30(12): 1985-1991. DOI: 10.1093/annonc/mdz407.
doi: S0923-7534(20)32560-6 pmid: 31987302 |
[18] |
Shaw AT, Bauer TM, de Marinis F, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer[J]. N Engl J Med, 2020, 383(21): 2018-2029. DOI: 10.1056/NEJMoa2027187.
doi: 10.1056/NEJMoa2027187 |
[19] |
Shaw AT, Riely GJ, Bang YJ, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001[J]. Ann Oncol, 2019, 30(7): 1121-1126. DOI: 10.1093/annonc/mdz131.
doi: S0923-7534(19)31237-2 pmid: 31987379 |
[20] |
Reungwetwattana T, Liang Y, Zhu V, et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: the why, the how, the who, the unknown, and the inevitable[J]. Lung Cancer, 2017, 103: 27-37. DOI: 10.1016/j.lungcan.2016.11.011.
doi: S0169-5002(16)30527-X pmid: 28024693 |
[21] |
Baltschukat S, Engstler BS, Huang A, et al. Capmatinib (INC280) is active against models of non-small cell lung cancer and other cancer types with defined mechanisms of MET activation[J]. Clin Cancer Res, 2019, 25(10): 3164-3175. DOI: 10.1158/1078-0432.CCR-18-2814.
doi: 10.1158/1078-0432.CCR-18-2814 pmid: 30674502 |
[22] |
Wolf J, Seto T, Han JY, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer[J]. N Engl J Med, 2020, 383(10): 944-957. DOI: 10.1056/NEJMoa2002787.
doi: 10.1056/NEJMoa2002787 |
[23] |
Mathieu LN, Larkins E, Akinboro O, et al. FDA approval summary: capmatinib and tepotinib for the treatment of metastatic NSCLC harboring MET exon 14 skipping mutations or alterations[J]. Clin Cancer Res, 2022, 28(2): 249-254. DOI: 10.1158/1078-0432.CCR-21-1566.
doi: 10.1158/1078-0432.CCR-21-1566 |
[24] |
Markham A. Tepotinib: first approval[J]. Drugs, 2020, 80(8): 829-833. DOI: 10.1007/s40265-020-01317-9.
doi: 10.1007/s40265-020-01317-9 pmid: 32361823 |
[25] |
Lai GGY, Guo R, Drilon A, et al. Refining patient selection of MET-activated non-small cell lung cancer through biomarker precision[J]. Cancer Treat Rev, 2022, 110: 102444. DOI: 10.1016/j.ctrv.2022.102444.
doi: 10.1016/j.ctrv.2022.102444 |
[26] |
Paik PK, Felip E, Veillon R, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations[J]. N Engl J Med, 2020, 383(10): 931-943. DOI: 10.1056/NEJMoa2004407.
doi: 10.1056/NEJMoa2004407 |
[27] |
Le X, Sakai H, Felip E, et al. Tepotinib efficacy and safety in patients with MET exon 14 skipping NSCLC: outcomes in patient subgroups from the VISION study with relevance for clinical practice[J]. Clin Cancer Res, 2022, 28(6): 1117-1126. DOI: 10.1158/1078-0432.CCR-21-2733.
doi: 10.1158/1078-0432.CCR-21-2733 |
[28] |
Tanaka H, Taima K, Makiguchi T, et al. Activity and bioavailability of tepotinib for leptomeningeal metastasis of NSCLC with MET exon 14 skipping mutation[J]. Cancer Commun (Lond), 2021, 41(1): 83-87. DOI: 10.1002/cac2.12124.
doi: 10.1002/cac2.12124 |
[29] |
Lu S, Fang J, Li X, et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study[J]. Lancet Respir Med, 2021, 9(10): 1154-1164. DOI: 10.1016/S2213-2600(21)00084-9.
doi: 10.1016/S2213-2600(21)00084-9 pmid: 34166627 |
[30] |
Ai J, Chen Y, Peng X, et al. Preclinical evaluation of SCC244 (glumetinib), a novel, potent, and highly selective inhibitor of c-Met in MET-dependent cancer models[J]. Mol Cancer Ther, 2018, 17(4): 751-762. DOI: 10.1158/1535-7163.MCT-17-0368.
doi: 10.1158/1535-7163.MCT-17-0368 pmid: 29237805 |
[31] | ClinicalTrials. gov. A phase Ⅰb/Ⅱ, open-label, multicenter study to evaluate the efficacy and safety of glumetinib (SCC244), a selective MET inhibitor in patients with advanced non-small cell lung cancer harboring MET-alterations[EB/OL]. [2019-07-15] [2022-09-07]. https://clinicaltrials.gov/ct2/show/NCT04270591. |
[32] |
Lu S, Yu Y, Zhou J, et al. Abstract CT034: phase Ⅱ study of SCC244 in NSCLC patients harboring MET exon 14 skipping (METex14) mutations (GLORY study)[J]. Cancer Res, 2022, 82(12_Supplement): CT034. DOI: 10.1158/1538-7445.AM2022-CT034.
doi: 10.1158/1538-7445.AM2022-CT034 |
[33] |
Neijssen J, Cardoso RMF, Chevalier KM, et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET[J]. J Biol Chem, 2021, 296: 100641. DOI: 10.1016/j.jbc.2021.100641.
doi: 10.1016/j.jbc.2021.100641 |
[34] |
Vyse S, Huang PH. Amivantamab for the treatment of EGFR exon 20 insertion mutant non-small cell lung cancer[J]. Expert Rev Anticancer Ther, 2022, 22(1): 3-16. DOI: 10.1080/14737140.2022.2016397.
doi: 10.1080/14737140.2022.2016397 |
[35] | ClinicalTrials. gov. A phase 1, first-in-human, open-label, dose escalation study of JNJ-61186372, a human bispecific EGFR and cMet antibody, in subjects with advanced non-small cell lung cancer[EB/OL]. [2016-05-24] [2022-09-07]. https://clinicaltrials.gov/ct2/show/NCT02609776?term=NCT02609776&draw=2&rank=1. |
[36] |
Amivantamab emerges positively from its "Chrysalis"[J]. Cancer Discov, 2022, 12(8): OF2. DOI: 10.1158/2159-8290.CD-NB2022-0044.
doi: 10.1158/2159-8290.CD-NB2022-0044 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[3] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[4] | Wang Kun, Zhou Zhongxin, Zang Qiwei. Predictive value of serum TGF-β1 and VEGF levels in patients with non-small cell lung cancer after single-port thoracoscopic radical resection [J]. Journal of International Oncology, 2024, 51(4): 198-203. |
[5] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[6] | Yan Aiting, Wang Cuizhu, Liu Chungui, Lu Xiaomin. Clinical efficacy and safety of camrelizumab and sintilimab in the treatment of advanced non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(3): 137-142. |
[7] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[8] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing. Progress of radiotherapy in oligometastatic non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[9] | Zhang Keping, Zhao Yongsheng, Yang Juan, Fu Maoyong. Chlorogenic acid induces mitochondrial dysfunction in lung cancer A549 cells by inhibiting the PI3K-Akt pathway [J]. Journal of International Oncology, 2024, 51(1): 21-28. |
[10] | Xie Yu, Jiang Cheng, Huang Mingmin, Guo Aibin, Yin Zhenyu, Lin Yongjuan. Effects of intrathecal infusion chemotherapy on intracranial pressure in non-small cell lung cancer patients with leptomeningeal metastases by ultrasound measurement of optic nerve sheath diameter [J]. Journal of International Oncology, 2023, 50(9): 532-539. |
[11] | Deng Juanjun, Zhao Dayong, Li Miao. Adverse reactions and risk factors of immune checkpoint inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2023, 50(9): 564-568. |
[12] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[13] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[14] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[15] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||