Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (9): 569-573.doi: 10.3760/cma.j.cn371439-20230410-00109
• Reviews • Previous Articles Next Articles
Received:
2023-04-10
Revised:
2023-04-22
Online:
2023-09-08
Published:
2023-10-26
Contact:
Ding Jianghua
E-mail:doctor0922@126.com
Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma[J]. Journal of International Oncology, 2023, 50(9): 569-573.
[1] |
Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9): 557-588. DOI: 10.1038/s41575-020-0310-z.
pmid: 32606456 |
[2] | Vogel A, Segatto O, Stenzinger A, et al. FGFR2 inhibition in cho-langiocarcinoma[J]. Annu Rev Med, 2023, 74: 293-306. DOI: 10.1146/annurev-med-042921-024707. |
[3] |
Pu X, Ye Q, Cai J, et al. Typing FGFR2 translocation determines the response to targeted therapy of intrahepatic cholangiocarcinomas[J]. Cell Death Dis, 2021, 12(3): 256. DOI: 10.1038/s41419-021-03548-4.
pmid: 33692336 |
[4] | Makawita S, K Abou-Alfa G, Roychowdhury S, et al. Infigratinib in patients with advanced cholangiocarcinoma with FGFR2 gene fusions/translocations: the PROOF 301 trial[J]. Future Oncol, 2020, 16(30): 2375-2384. DOI: 10.2217/fon-2020-0299. |
[5] |
Lowery MA, Ptashkin R, Jordan E, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention[J]. Clin Cancer Res, 2018, 24(17): 4154-4161. DOI: 10.1158/1078-0432.CCR-18-0078.
pmid: 29848569 |
[6] |
Jain A, Javle M. Molecular profiling of biliary tract cancer: a target rich disease[J]. J Gastrointest Oncol, 2016, 7(5): 797-803. DOI: 10.21037/jgo.2016.09.01.
pmid: 27747093 |
[7] | Goyal L, Kongpetch S, Crolley VE, et al. Targeting FGFR inhibition in cholangiocarcinoma[J]. Cancer Treat Rev, 2021, 95: 102170. DOI: 10.1016/j.ctrv.2021.102170. |
[8] |
Chen L, Marsiglia WM, Chen H, et al. Molecular basis for receptor tyrosine kinase A-loop tyrosine transphosphorylation[J]. Nat Chem Biol, 2020, 16(3): 267-277. DOI: 10.1038/s41589-019-0455-7.
pmid: 31959966 |
[9] | Zingg D, Bhin J, Yemelyanenko J, et al. Truncated FGFR2 is a clinically actionable oncogene in multiple cancers[J]. Nature, 2022, 608(7923): 609-617. DOI: 10.1038/s41586-022-05066-5. |
[10] | Hyung S, Han B, Jung J, et al. Incidence of FGFR2 amplification and FGFR2 fusion in patients with metastatic cancer using clinical sequencing[J]. J Oncol, 2022, 2022: 9714570. DOI: 10.1155/2022/9714570. |
[11] | Dong L, Lu D, Chen R, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma[J]. Cancer Cell, 2022, 40(1): 70-87. e15. DOI: 10.1016/j.ccell.2021.12.006. |
[12] | Smyth EC, Babina IS, Turner NC. Gatekeeper mutations and intratumoral heterogeneity in FGFR2-translocated cholangiocarcinoma[J]. Cancer Discov, 2017, 7(3): 248-249. DOI: 10.1158/2159-8290.CD-17-0057. |
[13] |
Cristinziano G, Porru M, Lamberti D, et al. FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids towards cholangiocarcinoma[J]. J Hepatol, 2021, 75(2): 351-362. DOI: 10.1016/j.jhep.2021.02.032.
pmid: 33741397 |
[14] | Olivieri C, Li GC, Wang Y, et al. ATP-competitive inhibitors modulate the substrate binding cooperativity of a kinase by altering its conformational entropy[J]. Sci Adv, 2022, 8(30): eabo0696. DOI: 10.1126/sciadv.abo0696. |
[15] | Kommalapati A, Tella SH, Borad M, et al. FGFR inhibitors in oncology: insight on the management of toxicities in clinical practice[J]. Cancers (Basel), 2021, 13(12): 2968. DOI: 10.3390/cancers13122968. |
[16] | Chakrabarti S, Finnes HD, Mahipal A. Fibroblast growth factor receptor (FGFR) inhibitors in cholangiocarcinoma: current status, insight on resistance mechanisms and toxicity management[J]. Expert Opin Drug Metab Toxicol, 2022, 18(1): 85-98. DOI: 10.1080/17425255.2022.2039118. |
[17] | Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study[J]. Lancet Gastroenterol Hepatol, 2021, 6(10): 803-815. DOI: 10.1016/S2468-1253(21)00196-5. |
[18] | Jaidee R, Kukongviriyapan V, Senggunprai L, et al. Inhibition of FGFR2 enhances chemosensitivity to gemcitabine in cholangiocarcinoma through the AKT/mTOR and EMT signaling pathways[J]. Life Sci, 2022, 296: 120427. DOI: 10.1016/j.lfs.2022.120427. |
[19] | Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study[J]. Lancet Oncol, 2020, 21(5): 671-684. DOI: 10.1016/S1470-2045(20)30109-1. |
[20] | Shi GM, Huang XY, Wen TF, et al. Pemigatinib in previously treated Chinese patients with locally advanced or metastatic cholangiocarcinoma carrying FGFR2 fusions or rearrangements: a phase Ⅱ study[J]. Cancer Med, 2023, 12(4): 4137-4146. DOI: 10.1002/cam4.5273. |
[21] | Braun S, McSheehy P, Litherland K, et al. Derazantinib: an investigational drug for the treatment of cholangiocarcinoma[J]. Expert Opin Investig Drugs, 2021, 30(11): 1071-1080. DOI: 10.1080/13543784.2021.1995355. |
[22] | Ahn DH, Uson Junior PLS, Masci P, et al. A pilot study of Pan-FGFR inhibitor ponatinib in patients with FGFR-altered advanced cholangiocarcinoma[J]. Invest New Drugs, 2022, 40(1): 134-141. DOI: 10.1007/s10637-021-01170-x. |
[23] | Mazzaferro V, El-Rayes BF, Droz Dit Busset M, et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma[J]. Br J Cancer, 2019, 120(2): 165-171. DOI: 10.1038/s41416-018-0334-0. |
[24] | Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma[J]. Cancer Discov, 2017, 7(3): 252-263. DOI: 10.1158/2159-8290.CD-16-1000. |
[25] | Syed YY. Futibatinib: first approval[J]. Drugs, 2022, 82(18): 1737-1743. DOI: 10.1007/s40265-022-01806-z. |
[26] |
Goyal L, Shi L, Liu LY, et al. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma[J]. Cancer Discov, 2019, 9(8): 1064-1079. DOI: 10.1158/2159-8290.CD-19-0182.
pmid: 31109923 |
[27] | Sootome H, Fujita H, Ito K, et al. Futibatinib is a novel irrever-sible FGFR 1-4 inhibitor that shows selective antitumor activity against FGFR-deregulated tumors[J]. Cancer Res, 2020, 80(22): 4986-4997. DOI: 10.1158/0008-5472.CAN-19-2568. |
[28] | Meric-Bernstam F, Bahleda R, Hierro C, et al. Futibatinib, an irreversible FGFR1-4 inhibitor, in patients with advanced solid tumors harboring FGF/FGFR aberrations: a phase Ⅰ dose-expansion study[J]. Cancer Discov, 2022, 12(2): 402-415. DOI: 10.1158/2159-8290.CD-21-0697. |
[29] | Goyal L, Meric-Bernstam F, Hollebecque A, et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma[J]. N Engl J Med, 2023, 388(3): 228-239. DOI: 10.1056/NEJMoa2206834. |
[30] | Szybowska P, Kostas M, Wesche J, et al. Cancer mutations in FGFR2 prevent a negative feedback loop mediated by the ERK1/2 pathway[J]. Cells, 2019, 8(6): 518. DOI: 10.3390/cells8060518. |
[31] | Li XY, Tao H, Jin C, et al. Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling[J]. Chin J Nat Med, 2020, 18(5): 345-355. DOI: 10.1016/S1875-5364(20)30041-8. |
[32] | Saborowski A, Vogel A, Segatto O. Combination therapies for targeting FGFR2 fusions in cholangiocarcinoma[J]. Trends Cancer, 2022, 8(2): 83-86. DOI: 10.1016/j.trecan.2021.11.001. |
[33] | Venkatanarayan A, Liang J, Yen I, et al. CRAF dimerization with ARAF regulates KRAS-driven tumor growth[J]. Cell Rep, 2022, 38(6): 110351. DOI: 10.1016/j.celrep.2022.110351. |
[34] |
Hofmann MH, Gerlach D, Misale S, et al. Expanding the reach of precision oncology by drugging all KRAS mutants[J]. Cancer Discov, 2022, 12(4): 924-937. DOI: 10.1158/2159-8290.CD-21-1331.
pmid: 35046095 |
[35] | Reita D, Pabst L, Pencreach E, et al. Direct targeting KRAS mutation in non-small cell lung cancer: focus on resistance[J]. Cancers (Basel), 2022, 14(5): 1321. DOI: 10.3390/cancers14051321. |
[36] |
Silverman IM, Hollebecque A, Friboulet L, et al. Clinicogenomic analysis of FGFR2-rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib[J]. Cancer Discov, 2021, 11(2): 326-339. DOI: 10.1158/2159-8290.CD-20-0766.
pmid: 33218975 |
[37] |
Zhou Y, Xiang S, Yang F, et al. Targeting gatekeeper mutations for kinase drug discovery[J]. J Med Chem, 2022, 65(23): 15540-15558. DOI: 10.1021/acs.jmedchem.2c01361.
pmid: 36395392 |
[38] |
Du J, Lan T, Liao H, et al. CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma[J]. Mol Cancer, 2022, 21(1): 18. DOI: 10.1186/s12943-021-01482-9.
pmid: 35039066 |
[39] | Kendre G, Marhenke S, Lorz G, et al. The Co-mutational spectrum determines the therapeutic response in murine FGFR2 fusion-driven cholangiocarcinoma[J]. Hepatology, 2021, 74(3): 1357-1370. DOI: 10.1002/hep.31799. |
[40] | Kanugovi Vijayavittal A, Amere Subbarao S. The conformation-specific Hsp90 inhibition interferes with the oncogenic RAF kinase adaptation and triggers premature cellular senescence, hence, acts as a tumor suppressor mechanism[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(3): 118943. DOI: 10.1016/j.bbamcr.2020.118943. |
[41] | Wang L, Zhang Q, You Q. Targeting the HSP90-CDC37-kinase chaperone cycle: a promising therapeutic strategy for cancer[J]. Med Res Rev, 2022, 42(1): 156-182. DOI: 10.1002/med.21807. |
[42] | Weeraphan C, Phongdara A, Chaiyawat P, et al. Phosphoproteome profiling of isogenic cancer cell-derived exosome reveals HSP90 as a potential marker for human cholangiocarcinoma[J]. Proteomics, 2019, 19(12): e1800159. DOI: 10.1002/pmic.201800159. |
[43] |
Lamberti D, Cristinziano G, Porru M, et al. HSP90 inhibition drives degradation of FGFR2 fusion proteins: implications for treatment of cholangiocarcinoma[J]. Hepatology, 2019, 69(1): 131-142. DOI: 10.1002/hep.30127.
pmid: 30067876 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[5] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[6] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[7] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[8] | Deng Lili, Duan Xingyu, Li Baozhong. Advances of anti-HER2 targeted drugs and combined therapeutic regimens for gastric and esophagogastic adenocarcinoma [J]. Journal of International Oncology, 2023, 50(12): 751-757. |
[9] | Liu Shaoping, Luo Hanchuan, Lin Shuhan, Luo Jiahui. Current status and research progress of interventional and systemic therapy for advanced hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(12): 758-762. |
[10] | Jiang Shan, Xu Ximing. Recent progresses of targeted therapy and immunotherapy of hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(11): 688-695. |
[11] | Jiang Shan, Xu Yangtao, Liu Xin, Chen Wenliang, Xu Ximing. Predictive value of baseline peripheral blood inflammatory biomarkers for prognosis in patients with advanced hepatocellular carcinoma treated with immunotherapy combined with targeted therapy [J]. Journal of International Oncology, 2023, 50(10): 600-607. |
[12] | Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang. Treatment status of non-small cell lung cancer with METexon14 skipping mutation [J]. Journal of International Oncology, 2023, 50(1): 37-41. |
[13] | Song Jia, Hu Qinyong. Application of TACE combined with molecular targeted therapy and immunotherapy in BCLC B/C hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(9): 550-554. |
[14] | Zhang Jingxian, Yi Dan, Li Xiaojiang. Application of antibody-drug conjugates in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(5): 296-301. |
[15] | Zhang Rui, Feng Enzi, Ren Yanxin, Li Xiaojiang. Advances in non-operative treatment of advanced hypopharyngeal squamous cell carcinoma [J]. Journal of International Oncology, 2022, 49(4): 233-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||