Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (1): 33-36.doi: 10.3760/cma.j.cn371439-20221005-00006
• Reviews • Previous Articles Next Articles
Sun Qi1, Li Wenqian2(), Xie Youbang2, Zhou Houfa1
Received:
2022-10-05
Revised:
2022-11-26
Online:
2023-01-08
Published:
2023-03-16
Contact:
Li Wenqian
E-mail:lwq121616@163.com
Supported by:
Sun Qi, Li Wenqian, Xie Youbang, Zhou Houfa. Research progress on the mechanism of bone marrow suppression after chemotherapy[J]. Journal of International Oncology, 2023, 50(1): 33-36.
[1] | World Health Organization. Global health estimates 2020:deaths by cause, age, sex, by country and by region, 2000-2019[R]. Geneva, World Health Organization, 2020. |
[2] |
Xiao H, Xiong L, Song X, et al. Angelica sinensis polysaccharides ameliorate stress-induced premature senescence of hematopoietic cell via protecting bone marrow stromal cells from oxidative injuries caused by 5-fluorouracil[J]. Int J Mol Sci, 2017, 18(11): 2265. DOI: 10.3390/ijms18112265.
doi: 10.3390/ijms18112265 |
[3] |
Han J, Xia J, Zhang L, et al. Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide[J]. J Ginseng Res, 2019, 43(4): 618-624. DOI: 10.1016/j.jgr.2018.07.009.
doi: 10.1016/j.jgr.2018.07.009 |
[4] |
Wei Q, Frenette PS. Niches for hematopoietic stem cells and their progeny[J]. Immunity, 2018, 48(4): 632-648. DOI: 10.1016/j.immuni.2018.03.024.
doi: S1074-7613(18)30122-5 pmid: 29669248 |
[5] |
熊丽溶, 宋小英, 景鹏伟, 等. 5-氟尿嘧啶损伤骨髓基质细胞致造血细胞应激诱导性早衰[J]. 中国实验血液学杂志, 2017, 25(4): 1178-1186. DOI: 10.7534/j.issn.1009-2137.2017.04.038.
doi: 10.7534/j.issn.1009-2137.2017.04.038 |
[6] |
Liu M, Tan H, Zhang X, et al. Hematopoietic effects and mechanisms of Fufang e׳jiao jiang on radiotherapy and chemotherapy-induced myelosuppressed mice[J]. J Ethnopharmacol, 2014, 152(3): 575-584. DOI: 10.1016/j.jep.2014.02.012.
doi: 10.1016/j.jep.2014.02.012 pmid: 24534527 |
[7] |
Li Y, Xue Z, Dong X, et al. Mitochondrial dysfunction and oxidative stress in bone marrow stromal cells induced by daunorubicin leads to DNA damage in hematopoietic cells[J]. Free Radic Biol Med, 2020, 146: 211-221. DOI: 10.1016/j.freeradbiomed.2019.11.007.
doi: 10.1016/j.freeradbiomed.2019.11.007 |
[8] |
Henry E, Souissi-Sahraoui I, Deynoux M, et al. Human hemato-poietic stem/progenitor cells display reactive oxygen species-dependent long-term hematopoietic defects after exposure to low doses of ionizing radiations[J]. Haematologica, 2020, 105(8): 2044-2055. DOI: 10.3324/haematol.2019.226936.
doi: 10.3324/haematol.2019.226936 pmid: 31780635 |
[9] |
Gill JG, Piskounova E, Morrison SJ, et al. Cancer, oxidative stress, and metastasis[J]. Cold Spring Harb Symp Quant Biol, 2016, 81: 163-175. DOI: 10.1101/sqb.2016.81.030791.
doi: 10.1101/sqb.2016.81.030791 pmid: 28082378 |
[10] |
Xu Y, Zeng F, Jiang J, et al. The hematopoietic function of medicinal wine Maoji Jiu revealed in blood deficiency model rats[J]. Evid Based Complement Alternat Med, 2022, 2022: 1025504. DOI: 10.1155/2022/1025504.
doi: 10.1155/2022/1025504 |
[11] |
李艺辉, 刘喆, 李欢, 等. 化疗引起的骨髓基质细胞损伤对正常造血细胞的影响[J]. 中国实验血液学杂志, 2019, 27(1): 233-238. DOI: 10.7534/j.issn.1009-2137.2019.01.038.
doi: 10.7534/j.issn.1009-2137.2019.01.038 |
[12] |
中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 同步放化疗期间应用聚乙二醇化重组人粒细胞刺激因子中国专家共识(2020版)[J]. 国际肿瘤学杂志, 2021, 48(1): 11-17. DOI: 10.3760/cma.j.cn371439-20201126-00002.
doi: 10.3760/cma.j.cn371439-20201126-00002 |
[13] |
Martínez-Zamudio RI, Robinson L, Roux PF, et al. SnapShot: cellular senescence pathways[J]. Cell, 2017, 170(4): 816-816.e1. DOI: 10.1016/j.cell.2017.07.049.
doi: S0092-8674(17)30886-3 pmid: 28802049 |
[14] |
Lucas D, Scheiermann C, Chow A, et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration[J]. Nat Med, 2013, 19(6): 695-703. DOI: 10.1038/nm.3155.
doi: 10.1038/nm.3155 pmid: 23644514 |
[15] |
Maryanovich M, Zahalka AH, Pierce H, et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche[J]. Nat Med, 2018, 24(6): 782-791. DOI: 10.1038/s41591-018-0030-x.
doi: 10.1038/s41591-018-0030-x pmid: 29736022 |
[16] |
Park MH, Jung IK, Min WK, et al. Neuropeptide Y improves cisplatin-induced bone marrow dysfunction without blocking chemotherapeutic efficacy in a cancer mouse model[J]. BMB Rep, 2017, 50(8): 417-422. DOI: 10.5483/bmbrep.2017.50.8.099.
doi: 10.5483/bmbrep.2017.50.8.099 pmid: 28712386 |
[17] |
Park MH, Jin HK, Min WK, et al. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow[J]. EMBO J, 2015, 34(12): 1648-1660. DOI: 10.15252/embj.201490174.
doi: 10.15252/embj.201490174 pmid: 25916827 |
[18] |
Park MH, Baek B, Jin HK, et al. Novel peptides derived from neuropeptide Y prevent chemotherapy-induced bone marrow damage by regulating hematopoietic stem cell microenvironment[J]. Anim Cells Syst (Seoul), 2018, 22(5): 281-288. DOI: 10.1080/19768354.2018.1517826.
doi: 10.1080/19768354.2018.1517826 |
[19] |
Lee S, Lee JS. Cellular senescence: a promising strategy for cancer therapy[J]. BMB Rep, 2019, 52(1): 35-41. DOI: 10.5483/BMBRep.2019.52.1.294.
doi: 10.5483/BMBRep.2019.52.1.294 pmid: 30526771 |
[20] |
Montazersaheb S, Ehsani A, Fathi E, et al. Cellular and molecular mechanisms involved in hematopoietic stem cell aging as a clinical prospect[J]. Oxid Med Cell Longev, 2022, 2022: 2713483. DOI: 10.1155/2022/2713483.
doi: 10.1155/2022/2713483 |
[21] |
Shao L, Wang Y, Chang J, et al. Hematopoietic stem cell senescence and cancer therapy-induced long-term bone marrow injury[J]. Transl Cancer Res, 2013, 2(5): 397-411. DOI: 10.3978/j.issn.2218-676X.2013.07.03.
doi: 10.3978/j.issn.2218-676X.2013.07.03 pmid: 24605290 |
[22] |
Sorimachi Y, Karigane D, Ootomo Y, et al. p38α plays differential roles in hematopoietic stem cell activity dependent on aging contexts[J]. J Biol Chem, 2021, 296: 100563. DOI: 10.1016/j.jbc.2021.100563.
doi: 10.1016/j.jbc.2021.100563 |
[23] |
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence[J]. Trends Cell Biol, 2018, 28(6): 436-453. DOI: 10.1016/j.tcb.2018.02.001.
doi: S0962-8924(18)30020-5 pmid: 29477613 |
[24] |
Capuozzo M, Santorsola M, Bocchetti M, et al. p53: from fundamental biology to clinical applications in cancer[J]. Biology (Basel), 2022, 11(9): 1325. DOI: 10.3390/biology11091325.
doi: 10.3390/biology11091325 |
[25] |
Herranz N, Gil J. Mechanisms and functions of cellular senescence[J]. J Clin Invest, 2018, 128(4): 1238-1246. DOI: 10.1172/JCI95148.
doi: 10.1172/JCI95148 pmid: 29608137 |
[26] |
Si S, Nakajima-Takagi Y, Iga T, et al. Hematopoietic insults damage bone marrow niche by activating p53 in vascular endothelial cells[J]. Exp Hematol, 2018, 63: 41-51.e1. DOI: 10.1016/j.exphem.2018.04.006.
doi: S0301-472X(18)30213-3 pmid: 29709619 |
[27] |
Zheng S, Koh XY, Goh HC, et al. Inhibiting p53 acetylation reduces cancer chemotoxicity[J]. Cancer Res, 2017, 77(16): 4342-4354. DOI: 10.1158/0008-5472.CAN-17-0424.
doi: 10.1158/0008-5472.CAN-17-0424 pmid: 28655792 |
[28] |
Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation[J]. Antioxid Redox Signal, 2014, 20(9): 1447-1462. DOI: 10.1089/ars.2013.5635.
doi: 10.1089/ars.2013.5635 |
[29] |
Chen Z, Amro EM, Becker F, et al. Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation[J]. J Exp Med, 2019, 216(1): 152-175. DOI: 10.1084/jem.20181505.
doi: 10.1084/jem.20181505 |
[30] |
Zhao J, Zhang L, Lu A, et al. ATM is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging[J]. Aging (Albany NY), 2020, 12(6): 4688-4710. DOI: 10.18632/aging.102863.
doi: 10.18632/aging.102863 |
[31] |
王晓玲, 黄冬榕, 郑倩倩, 等. “芪归药对”干预NF-κB通路调控骨髓造血干细胞辐射旁效应损伤的机制研究[J]. 时珍国医国药, 2021, 32(5): 1051-1054. DOI: 10.3969/j.issn.1008-0805.2021.05.08.
doi: 10.3969/j.issn.1008-0805.2021.05.08 |
[32] |
He H, Xu P, Zhang X, et al. Aging-induced IL27Ra signaling impairs hematopoietic stem cells[J]. Blood, 2020, 136(2): 183-198. DOI: 10.1182/blood.2019003910.
doi: 10.1182/blood.2019003910 pmid: 32305041 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Jiang Xi, Wu Yongcun, Liang Yan, Chu Li, Duan Yingxin, Wang Lijun, Huo Junjie. Impact of pembrolizumab combined with chemotherapy on angiogenesis and circulating endothelial cells in patients with advanced non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(2): 89-94. |
[3] | An Rong, Liu Meihua, Wang Peichen, Wang Xiaohui. Research progress of Nrf2 in ovarian cancer [J]. Journal of International Oncology, 2023, 50(8): 493-497. |
[4] | Fan Shanlin, Wang Pinxiu, Kong Fei, Zhou Yujie, Yuan Wenzhen. Progress in the study of predictors of tumor regression grade after neoadjuvant chemotherapy for gastric cancer [J]. Journal of International Oncology, 2023, 50(2): 112-116. |
[5] | Yue Hongyun, Zhang Baihong. Senotherapies in cancers [J]. Journal of International Oncology, 2023, 50(12): 734-738. |
[6] | Geng Rui, Ma Junqiang, Guo Qiang, Niu Zhaofeng. Tendency of elderly patients with breast cancer to choose comprehensive treatment mode and its influencing factors [J]. Journal of International Oncology, 2023, 50(11): 650-654. |
[7] | Liu Yonghong, Xue Lingbo, Bai Yang, Jin Jian, Zang Chunxia, Zhang Bo, Li Jie. Predictive value of systemic inflammation response index before treatment for pathological complete response in patients with breast cancer undergoing neoadjuvant chemotherapy [J]. Journal of International Oncology, 2022, 49(4): 210-215. |
[8] | Zhang Junpeng, Yu Yanyan, Li Baosheng. Mechanism of lncRNA and circRNA regulating the sensitivity of radiotherapy and chemotherapy in esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2022, 49(3): 185-189. |
[9] | Liu Xiaojing, Zhu Minghua, Zuo Si, Meng Di, Bi Yan, Wang Wei, Jin Shujuan. Effects of different treatments on prognosis of triple-negative breast cancer [J]. Journal of International Oncology, 2022, 49(1): 33-38. |
[10] | Peng Ya, Liu An, Liu Huowang. Inhibitory effect and mechanism of PSD-007 photodynamic therapy on human nasopharyngeal carcinoma transplanted tumors in nude mice [J]. Journal of International Oncology, 2021, 48(3): 136-142. |
[11] | Li Chenxi, Zhao Hongwei. Advances in the treatment of platinum-resistant ovarian cancer with PARP inhibitors [J]. Journal of International Oncology, 2021, 48(3): 180-183. |
[12] | Wang Mopei, Ma Liwen. Adjuvant chemotherapy for upper tract urothelial carcinoma [J]. Journal of International Oncology, 2020, 47(7): 436-439. |
[13] | Hou Lina, Dina Suolitiken, Guo Zhi, Chen Xiao, Ren Hua. Comparison of efficacy and safety of PD-1 inhibitor monotherapy and combined with chemotherapy/targeted therapy in advanced malignant tumors [J]. Journal of International Oncology, 2020, 47(4): 193-198. |
[14] | Sun Liyun, Lu Yue, Zhang Shunkang, Chen Gang. Survival analysis of postmastectomy radiotherapy for breast cancer staged in cT1-2N1M0 after neoadjuvant chemotherapy with 0-3 metastatic lymph nodes [J]. Journal of International Oncology, 2020, 47(1): 10-17. |
[15] | Xiang Mingyue, Wang Lili, Han Dali. Progress of treatment for primary mediastinal B-cell lymphoma [J]. Journal of International Oncology, 2019, 46(8): 505-508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||