Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (6): 388-391.doi: 10.3760/cma.j.cn371439-20250225-00066
• Review • Previous Articles Next Articles
Received:
2025-02-25
Revised:
2025-03-19
Online:
2025-06-08
Published:
2025-06-26
Contact:
Wu Xinlin
E-mail:wuxinlin@126.com
Supported by:
Wang Yong, Wu Xinlin. Related molecular mechanisms of liver metastasis from colorectal cancer[J]. Journal of International Oncology, 2025, 52(6): 388-391.
[1] | 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035. |
[2] | Higa T, Nakayama KI. Cell cycle heterogeneity and plasticity of colorectal cancer stem cells[J]. Cancer Sci, 2024, 115(5): 1370-1377. DOI: 10.1111/cas.16117. |
[3] | Radu P, Zurzu M, Tigora A, et al. The impact of cancer stem cells in colorectal cancer[J]. Int J Mol Sci, 2024, 25(8): 4140. DOI: 10.3390/ijms25084140. |
[4] | Han J, Won M, Kim JH, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective[J]. Chem Soc Rev, 2020, 49(22): 7856-7878. DOI: 10.1039/d0cs00379d. |
[5] |
Fumagalli A, Oost KC, Kester L, et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer[J]. Cell Stem Cell, 2020, 26(4): 569-578.e7. DOI: 10.1016/j.stem.2020.02.008.
pmid: 32169167 |
[6] | Moorman A, Benitez EK, Cambulli F, et al. Progressive plasticity during colorectal cancer metastasis[J]. Nature, 2025, 637(8047): 947-954. DOI: 10.1038/s41586-024-08150-0. |
[7] |
Heinz MC, Peters NA, Oost KC, et al. Liver colonization by colorectal cancer metastases requires YAP-controlled plasticity at the micrometastatic stage[J]. Cancer Res, 2022, 82(10): 1953-1968. DOI: 10. 1158/0008-5472.CAN-21-0933.
pmid: 35570706 |
[8] | Qin R, Fan X, Huang Y, et al. Role of glucose metabolic reprogramming in colorectal cancer progression and drug resistance[J]. Transl Oncol, 2024, 50: 102156. DOI: 10.1016/j.tranon.2024.102156. |
[9] | Kuo CC, Ling HH, Chiang MC, et al. Metastatic colorectal cancer rewrites metabolic program through a Glut3-YAP-dependent signaling circuit[J]. Theranostics, 2019, 9(9): 2526-2540. DOI: 10.7150/thno.32915. |
[10] |
Kita M, Fujiwara-Tani R, Kishi S, et al. Role of creatine shuttle in colorectal cancer cells[J]. Oncotarget, 2023, 14: 485-501. DOI: 10.18632/oncotarget.28436.
pmid: 37204253 |
[11] | Huang Y, Wang F, Lin X, et al. Nuclear VCP drives colorectal cancer progression by promoting fatty acid oxidation[J]. Proc Natl Acad Sci U S A, 2023, 120(41): e2221653120. DOI: 10.1073/pnas.2221653120. |
[12] | Lu J, Kornmann M, Traub B. Role of epithelial to mesenchymal transition in colorectal cancer[J]. Int J Mol Sci, 2023, 24(19): 14815. DOI: 10.3390/ijms241914815. |
[13] | Bustamante A, Baritaki S, Zaravinos A, et al. Relationship of signaling pathways between RKIP expression and the inhibition of EMT-inducing transcription factors SNAIL1/2, TWIST1/2 and ZEB1/2[J]. Cancers (Basel), 2024, 16(18): 3180. DOI: 10.3390/cancers16183180. |
[14] | Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis[J]. J Hematol Oncol, 2022, 15(1): 129. DOI: 10.1186/s13045-022-01347-8. |
[15] | Tolue Ghasaban F, Moghbeli M. Long non-coding RNAs as the pivotal regulators of epithelial mesenchymal transition through Wnt/β-catenin signaling pathway in tumor cells[J]. Pathol Res Pract, 2024, 263: 155683. DOI: 10.1016/j.prp.2024.155683. |
[16] | Liu H, Li D, Sun L, et al. Interaction of lncRNA miR100HG with hnRNPA2B1 facilitates m6A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression[J]. Mol Cancer, 2022, 21(1): 74. DOI: 10.1186/s12943-022-01555-3. |
[17] | Lei ZN, Teng QX, Koya J, et al. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis[J]. Front Immunol, 2024, 15: 1417201. DOI: 10.3389/fimmu.2024.1417201. |
[18] | Radhakrishnan V, Kaifi JT, Suvilesh KN. Circulating tumor cells: how far have we come with mining these seeds of metastasis?[J]. Cancers (Basel), 2024, 16(4): 816. DOI: 10.3390/cancers16040816. |
[19] | Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice[J]. Signal Transduct Target Ther, 2024, 9(1): 226. DOI: 10.1038/s41392-024-01938-6. |
[20] | Gkountela S, Castro-Giner F, Szczerba BM, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding[J]. Cell, 2019, 176(1/2): 98-112.e14. DOI: 10.1016/j.cell.2018.11.046. |
[21] | Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circula-ting tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64. DOI: 10.1186/s12943-019-0976-4. |
[22] | Andryszkiewicz W, Misiąg P, Karwowska A, et al. Cancer metastases to the liver: mechanisms of tumor cell colonization[J]. Pharmaceuticals (Basel), 2024, 17(9): 1251. DOI: 10.3390/ph17091251. |
[23] |
Li J, Liu XG, Ge RL, et al. The ligation between ERMAP, galectin-9 and dectin-2 promotes kupffer cell phagocytosis and antitumor immunity[J]. Nat Immunol, 2023, 24(11): 1813-1824. DOI: 10.1038/s41590-023-01634-7.
pmid: 37813965 |
[24] |
Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, et al. Role of liver sinusoidal endothelial cells in liver diseases[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(6): 411-431. DOI: 10.1038/s41575-020-00411-3.
pmid: 33589830 |
[25] | Fan X, Meng M, Li B, et al. Brevilin A is a potent anti-metastatic CRC agent that targets the VEGF-IL6-STAT3 axis in the HSCs-CRC interplay[J]. J Transl Med, 2023, 21(1): 260. DOI: 10.1186/s12967-023-04087-6. |
[26] | Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J]. J Hematol Oncol, 2020, 13(1): 156. DOI: 10.1186/s13045-020-00991-2. |
[27] | Chen Z, Zhang G, Ren X, et al. Cross-talk between myeloid and B cells shapes the distinct microenvironments of primary and secondary liver cancer[J]. Cancer Res, 2023, 83(21): 3544-3561. DOI: 10.1158/0008-5472.CAN-23-0193. |
[28] |
Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver[J]. Cancer Cell, 2021, 39(5): 708-724.e11. DOI: 10.1016/j.ccell.2021.03.004.
pmid: 33798472 |
[29] | 高凡, 王萍, 杜超, 等. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. DOI: 10. 3760/cma.j.cn371439-20240429-00065. |
[1] | Zhong Xiao, Li Butuo, Wang Linlin. Research progress of radiotherapy for brain metastases from ALK-positive NSCLC [J]. Journal of International Oncology, 2025, 52(6): 374-378. |
[2] | Zeng Qianqian, Xiang Hong, Fu Lijun. Role of chemokine CX3CL1/CX3CR1 in intraperitoneal metastasis of ovarian cancer in nude mice [J]. Journal of International Oncology, 2025, 52(5): 282-287. |
[3] | Guo Haiyang, Hong Yonggang, Hao Liqiang. Role and research progress of ferroptosis in colorectal cancer [J]. Journal of International Oncology, 2025, 52(5): 319-324. |
[4] | Wang Yi, Wang Qiangli, Zhang Jia, Yang Yijin, Wang Sheng. Relationship between the expression of SUCNR1 and YBX1 in tissues of patients with colorectal cancer liver metastases and their clinicopathological characteristics and prognosis [J]. Journal of International Oncology, 2025, 52(3): 152-157. |
[5] | Wang Zhibao, Li Guangxian, Zhang Xinxin, Cui Wei, Zhang Wei. Predictive value of MRI combined with serum lncRNA KCNQ1OT1, miR-204-5p for axillary lymph node metastasis of breast cancer [J]. Journal of International Oncology, 2025, 52(2): 89-93. |
[6] | Zhan Haifeng, Tan Zixuan, Wang Wenxue, Geng Jiawei. Research progress of circadian genes in the occurrence, development and chronotherapy of colorectal cancer [J]. Journal of International Oncology, 2025, 52(1): 60-64. |
[7] | Wei Wei, Cai Zhaoying, Qian Yayun. Effect of Marsdenia tenacissima combined with XELOX solution on disulfide apoptosis in human colorectal cancer HCT116 cells [J]. Journal of International Oncology, 2024, 51(9): 545-555. |
[8] | Zhan Haifeng, Wang Wenxue, Geng Jiawei. Research progress in precise molecular targeted therapy for advanced colorectal cancer [J]. Journal of International Oncology, 2024, 51(9): 601-605. |
[9] | Li Zhiwei, Zhai Chunbao. Research progress on the anti-cancer effect of traditional Chinese medicine polyphenols on colorectal cancer [J]. Journal of International Oncology, 2024, 51(8): 526-531. |
[10] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[11] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[12] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing. Progress of radiotherapy in oligometastatic non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[15] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||