Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (1): 60-64.doi: 10.3760/cma.j.cn371439-20240528-00009
• Review • Previous Articles
Zhan Haifeng, Tan Zixuan, Wang Wenxue, Geng Jiawei()
Received:
2024-05-28
Revised:
2024-09-29
Online:
2025-01-08
Published:
2025-01-21
Contact:
Geng Jiawei
E-mail:jiawei-geng@kmust.edu.cn
Supported by:
Zhan Haifeng, Tan Zixuan, Wang Wenxue, Geng Jiawei. Research progress of circadian genes in the occurrence, development and chronotherapy of colorectal cancer[J]. Journal of International Oncology, 2025, 52(1): 60-64.
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
[2] | Xin M, Bi F, Wang C, et al. The circadian rhythm: a new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system[J]. J Adv Res, 2024: S2090-1232(24)00133-4. DOI: 10.1016/j.jare.2024.04.005. |
[3] |
Zhang L, Chen Y, Chong CS, et al. The genomic and transcriptomic landscapes of clock genes reveal the significance of circadian rhythm in the progression and immune microenvironment of metastatic colorectal cancer[J]. Clin Transl Med, 2022, 12(3): e755. DOI: 10.1002/ctm2.755.
pmid: 35297192 |
[4] | Aroca-Siendones MI, Moreno-SanJuan S, Puentes-Pardo JD, et al. Core circadian clock proteins as biomarkers of progression in colorectal cancer[J]. Biomedicines, 2021, 9(8): 967. DOI: 10.3390/biomedicines9080967. |
[5] |
Laothamatas I, Rasmussen ES, Green CB, et al. Metabolic and chemical architecture of the mammalian circadian clock[J]. Cell Chem Biol, 2023, 30(9): 1033-1052. DOI: 10.1016/j.chembiol.2023.08.014.
pmid: 37708890 |
[6] | 高旗旗, 孙阳. 节律基因家族在上皮性卵巢癌发生发展及治疗中的研究进展[J]. 中华医学杂志, 2019, 99(44): 3517-3520. DOI: 10.3760/cma.j.issn.0376-2491.2019.44.016. |
[7] | Rezaeian AH, Dang F, Wei W. The circadian clock, aging and its implications in cancer[J]. Neoplasia, 2023, 41: 100904. DOI: 10.1016/j.neo.2023.100904. |
[8] | Zhou Q, Wang R, Su Y, et al. The molecular circadian rhythms regulating the cell cycle[J]. J Cell Biochem, 2024, 125(4): e30539. DOI: 10.1002/jcb.30539. |
[9] | Ding G, Li X, Hou X, et al. REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity[J]. Nature, 2021, 592(7856): 763-767. DOI: 10.1038/s41586-021-03358-w. |
[10] | Batra T, Malik I, Prabhat A, et al. Sleep in unnatural times: illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches[J]. Proc Biol Sci, 2020, 287(1928): 20192952. DOI: 10.1098/rspb.2019.2952. |
[11] | Ligasová A, Frydrych I, Koberna K. Basic methods of cell cycle analysis[J]. Int J Mol Sci, 2023, 24(4): 3674. DOI: 10.3390/ijms24043674. |
[12] | Zhu H, Chen J, Wen Z, et al. The role of circadian clock genes in colorectal carcinoma: novel insights into regulatory mechanism and implications in clinical therapy[J]. Life Sci, 2023, 333: 122145. DOI: 10.1016/j.lfs.2023.122145. |
[13] | Rao X, Lin L. Circadian clock as a possible control point in colorectal cancer progression(review)[J]. Int J Oncol, 2022, 61(6): 149. DOI: 10.3892/ijo.2022.5439. |
[14] |
Wang Z, Zhou L, Wang Y, et al. The CK1δ/ε-AES axis regulates tumorigenesis and metastasis in colorectal cancer[J]. Theranostics, 2021, 11(9): 4421-4435. DOI: 10.7150/thno.53901.
pmid: 33754069 |
[15] | Chun SK, Fortin BM, Fellows RC, et al. Disruption of the circadian clock drives Apc loss of heterozygosity to accelerate colorectal cancer[J]. Sci Adv, 2022, 8(32): eabo2389. DOI: 10.1126/sciadv.abo2389. |
[16] | Peri SS, Narayanaa Y K, Hubert TD, et al. Navigating tumour microenvironment and Wnt signalling crosstalk: implications for advanced cancer therapeutics[J]. Cancers (Basel), 2023, 15(24): 5847. DOI: 10.3390/cancers15245847. |
[17] | Bass J. Interorgan rhythmicity as a feature of healthful metabolism[J]. Cell Metab, 2024, 36(4): 655-669. DOI: 10.1016/j.cmet.2024.01.009. |
[18] | O'Sullivan DE, Sutherland RL, Town S, et al. Risk factors for early-onset colorectal cancer: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2022, 20(6): 1229-1240.e5. DOI: 10.1016/j.cgh.2021.01.037. |
[19] |
Fuhr L, El-Athman R, Scrima R, et al. The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer[J]. EBioMedicine, 2018, 33: 105-121. DOI: 10.1016/j.ebiom.2018.07.002.
pmid: 30005951 |
[20] | Kim J, Sun W. Circadian coordination: understanding interplay between circadian clock and mitochondria[J]. Anim Cells Syst (Seoul), 2024, 28(1): 228-236. DOI: 10.1080/19768354.2024.2347503. |
[21] |
Wu Z, Xiao C, Long J, et al. Mitochondrial dynamics and colorectal cancer biology: mechanisms and potential targets[J]. Cell Commun Signal, 2024, 22(1): 91. DOI: 10.1186/s12964-024-01490-4.
pmid: 38302953 |
[22] | Chen J, Zhu H, Yin Y, et al. Colorectal cancer: metabolic interactions reshape the tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(5): 188797. DOI: 10.1016/j.bbcan.2022.188797. |
[23] | Wang Y, Narasimamurthy R, Qu M, et al. Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis[J]. Nat Cancer, 2024, 5(4): 546-556. DOI: 10.1038/s43018-024-00759-4. |
[24] |
Rebersek M. Gut microbiome and its role in colorectal cancer[J]. BMC Cancer, 2021, 21(1): 1325. DOI: 10.1186/s12885-021-09054-2.
pmid: 34895176 |
[25] | 安江宏, 钱莘, 骆璞, 等. 肠道微生态与肿瘤的诊断和治疗[J]. 国际肿瘤学杂志, 2021, 48(7): 436-440. DOI: 10.3760/cma.j.cn371439-20201019-00084. |
[26] |
Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer[J]. Nat Rev Endocrinol, 2020, 16(12): 731-739. DOI: 10.1038/s41574-020-00427-4.
pmid: 33106657 |
[27] | Liu JL, Xu X, Rixiati Y, et al. Dysfunctional circadian clock accelerates cancer metastasis by intestinal microbiota triggering accumulation of myeloid-derived suppressor cells[J]. Cell Metab, 2024, 36(6): 1320-1334.e9. DOI: 10.1016/j.cmet.2024.04.019. |
[28] |
Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target[J]. Nat Rev Drug Discov, 2021, 20(4): 287-307. DOI: 10.1038/s41573-020-00109-w.
pmid: 33589815 |
[29] |
Ali YF, Hong Z, Liu NA, et al. Clock in radiation oncology clinics: cost-free modality to alleviate treatment-related toxicity[J]. Cancer Biol Ther, 2022, 23(1): 201-210. DOI: 10.1080/15384047.2022.2041953.
pmid: 35263235 |
[30] |
Harper E, Talbot CJ. Is it time to change radiotherapy: the dawning of chronoradiotherapy?[J]. Clin Oncol (R Coll Radiol), 2019, 31(5): 326-335. DOI: 10.1016/j.clon.2019.02.010.
pmid: 30902558 |
[31] | Sancar A, Van Gelder R N. Clocks, cancer, and chronochemotherapy[J]. Science, 2021, 371(6524): eabb0738. DOI: 10.1126/science.abb0738. |
[32] | Niu Y, Fan X, Wang Y, et al. Genome-wide CRISPR screening reveals pyrimidine metabolic reprogramming in 5-FU chronochemotherapy of colorectal cancer[J]. Front Oncol, 2022, 12: 949715. DOI: 10.3389/fonc.2022.949715. |
[33] | Innominato PF, Karaboué A, Focan C, et al. Efficacy and safety of chronomodulated irinotecan, oxaliplatin, 5-fluorouracil and leucovorin combination as first- or second-line treatment against metastatic colorectal cancer: results from the international EORTC 05011 trial[J]. Int J Cancer, 2021, 148(10): 2512-2521. DOI: 10.1002/ijc.33422. |
[34] | Yang Y, Lindsey-Boltz LA, Vaughn CM, et al. Circadian clock, carcinogenesis, chronochemotherapy connections[J]. J Biol Chem, 2021, 297(3): 101068. DOI: 10.1016/j.jbc.2021.101068. |
[35] |
Pick R, Wang C, Zeng Q, et al. Circadian rhythms in anticancer immunity: mechanisms and treatment opportunities[J]. Annu Rev Immunol, 2024, 42(1): 83-102. DOI: 10.1146/annurev-immunol-090122-050842.
pmid: 38941606 |
[36] |
Fortin BM, Pfeiffer SM, Insua-Rodríguez J, et al. Circadian control of tumor immunosuppression affects efficacy of immune checkpoint blockade[J]. Nat Immunol, 2024, 25(7): 1257-1269. DOI: 10.1038/s41590-024-01859-0.
pmid: 38806707 |
[1] | Wei Wei, Cai Zhaoying, Qian Yayun. Effect of Marsdenia tenacissima combined with XELOX solution on disulfide apoptosis in human colorectal cancer HCT116 cells [J]. Journal of International Oncology, 2024, 51(9): 545-555. |
[2] | Zhan Haifeng, Wang Wenxue, Geng Jiawei. Research progress in precise molecular targeted therapy for advanced colorectal cancer [J]. Journal of International Oncology, 2024, 51(9): 601-605. |
[3] | Li Zhiwei, Zhai Chunbao. Research progress on the anti-cancer effect of traditional Chinese medicine polyphenols on colorectal cancer [J]. Journal of International Oncology, 2024, 51(8): 526-531. |
[4] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[5] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[6] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[7] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[8] | Liu Jiaqi, Wang Wenjun, Zhong Ping, Yang Min, Zhao Xinkai. Clinical efficacy and safety analysis of cetuximab combined with mFOLFOX6 chemotherapy in the treatment of advanced colorectal cancer patients [J]. Journal of International Oncology, 2024, 51(12): 763-768. |
[9] | Chen Kunyan, Du Juan, Ji Yuwei, Gu Weiwei, Peng Hanzhi. Effects of irinotecan combined with XELOX regimen on immune status, intestinal microecology and prognostic risk in elderly patients with colorectal cancer [J]. Journal of International Oncology, 2024, 51(11): 690-695. |
[10] | Chen Jie, Xu Hong, Chen Yutian. Role of tumor cell-derived exosomes in the pre-metastatic niche formation in colorectal cancer [J]. Journal of International Oncology, 2024, 51(10): 650-654. |
[11] | Liu Debao, Sun Ziwen, Lu Shoutang, Xu Haidong. Expression and clinical significance of ASB6 in colorectal cancer tissues [J]. Journal of International Oncology, 2023, 50(8): 470-474. |
[12] | Chen Zhuo, Tao Jun, Chen Lin, Ke Jing. Value of detection of peripheral blood miR-194 combined with fecal miR-143 in the clinical screening of colorectal cancer [J]. Journal of International Oncology, 2023, 50(5): 268-273. |
[13] | Huang Zhen, Zhang Caiyutian, Ke Shaobo, Shi Wei, Zhao Wensi, Chen Yongshun. Construction of postoperative prognosis model for patients with colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 157-163. |
[14] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[15] | Liu Yujie, Zhao Zhiqiang, Wang Zicheng. Levels and diagnostic value of TOP2A and ERBB2 in peripheral blood mononuclear cells of patients with early colorectal cancer [J]. Journal of International Oncology, 2023, 50(12): 717-722. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||