Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (5): 325-330.doi: 10.3760/cma.j.cn371439-20250106-00055
• Review • Previous Articles Next Articles
Ji Chunwang1,2, Li Song2, Liu Lian2()
Received:
2025-01-06
Revised:
2025-03-14
Online:
2025-05-08
Published:
2025-06-24
Contact:
Liu Lian
E-mail:lianliu@sdu.edu.cn
Supported by:
Ji Chunwang, Li Song, Liu Lian. Progress of pathogenesis and clinical research on immunotherapy for peritoneal carcinomatosis[J]. Journal of International Oncology, 2025, 52(5): 325-330.
[1] |
Almerie MQ, Gossedge G, Wright KE, et al. Treatment of peritoneal carcinomatosis with photodynamic therapy: systematic review of current evidence[J]. Photodiagnosis Photodyn Ther, 2017, 20: 276-286. DOI: 10.1016/j.pdpdt.2017.10.021.
pmid: 29111390 |
[2] |
Moran BJ, Guerra GR. Randomized controlled trials in surgical resection of colorectal peritoneal metastases: disentangling negativity in PRODIGE 7 and PROPHYLOCHIP[J]. Colorectal Dis, 2021, 23(6): 1303-1305. DOI: 10.1111/codi.15596.
pmid: 33615659 |
[3] | Lei Z, Wang J, Li Z, et al. Hyperthermic intraperitoneal chemotherapy for gastric cancer with peritoneal metastasis: a multicenter propensity score-matched cohort study[J]. Chin J Cancer Res, 2020, 32(6): 794-803. DOI: 10.21147/j.issn.1000-9604.2020.06.12. |
[4] |
McMullen JRW, Selleck M, Wall NR, et al. Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy[J]. Oncotarget, 2017, 8(26): 43481-43490. DOI: 10.18632/oncotarget.16480.
pmid: 28415645 |
[5] |
Bhatt A, Bhamre R, Rohila J, et al. Patients with extensive regional lymph node involvement (pN2) following potentially curative surgery for colorectal cancer are at increased risk for developing peritoneal metastases: a retrospective single-institution study[J]. Colorectal Dis, 2019, 21(3): 287-296. DOI: 10.1111/codi.14481.
pmid: 30457185 |
[6] | Pascual-Antón L, Cardeñes B, Sainz de la Cuesta R, et al. Mesothelial-to-mesenchymal transition and exosomes in peritoneal metastasis of ovarian cancer[J]. Int J Mol Sci, 2021, 22(21): 11496. DOI: 10. 3390/ijms222111496. |
[7] | Xia X, Zhang Z, Zhu C, et al. Neutrophil extracellular traps promote metastasis in gastric cancer patients with postoperative abdominal infectious complications[J]. Nat Commun, 2022, 13(1): 1017. DOI: 10.1038/s41467-022-28492-5. |
[8] | Zhu X, Zhou G, Ni P, et al. CD31 and D2-40 contribute to peritoneal metastasis of colorectal cancer by promoting epithelial-mesenchymal transition[J]. Gut Liver, 2021, 15(2): 273-283. DOI: 10.5009/gnl19407. |
[9] | Xu H, Hao Z, Wang Y, et al. Liquid tumor microenvironment enhances WNT signaling pathway of peritoneal metastasis of gastric cancer[J]. Sci Rep, 2023, 13(1): 11125. DOI: 10.1038/s41598-023-38373-6. |
[10] | Terri M, Trionfetti F, Montaldo C, et al. Mechanisms of peritoneal fibrosis: focus on immune cells-peritoneal stroma interactions[J]. Front Immunol, 2021, 12: 607204. DOI: 10.3389/fimmu.2021. 607204. |
[11] | Miyazaki M, Nakabo A, Nagano Y, et al. Tissue factor-induced fibrinogenesis mediates cancer cell clustering and multiclonal peritoneal metastasis[J]. Cancer Lett, 2023, 553: 215983. DOI: 10.1016/j.canlet.2022.215983. |
[12] | Yan Z, Liu K, Xu P, et al. ACLY promotes gastric tumorigenesis and accelerates peritoneal metastasis of gastric cancer regulated by HIF-1A[J]. Cell Cycle, 2023, 22(20): 2288-2301. DOI: 10.1080/15384101.2023.2286805. |
[13] |
Yu B, Zhu N, Fan Z, et al. miR-29c inhibits metastasis of gastric cancer cells by targeting VEGFA[J]. J Cancer, 2022, 13(14): 3566-3574. DOI: 10.7150/jca.77727.
pmid: 36484007 |
[14] | Deng G, Wang P, Su R, et al. SPI1+ CD68+ macrophages as a biomarker for gastric cancer metastasis: a rationale for combined antiangiogenic and immunotherapy strategies[J]. J Immunother Cancer, 2024, 12(10): e009983. DOI: 10.1136/jitc-2024-009983. |
[15] | Pawar NR, Buzza MS, Duru N, et al. Matriptase drives dissemination of ovarian cancer spheroids by a PAR-2/PI3K/Akt/MMP9 signa-ling axis[J]. J Cell Biol, 222(11): e202209114. DOI: 10.1083/jcb. 202209114. |
[16] | Bella Á, Di Trani CA, Fernández-Sendin M, et al. Mouse models of peritoneal carcinomatosis to develop clinical applications[J]. Cancers (Basel), 2021, 13(5): 963. DOI: 10.3390/cancers13050963. |
[17] |
Wagner PL, Knotts CM, Donneberg VS, et al. Characterizing the immune environment in peritoneal carcinomatosis: insights for novel immunotherapy strategies[J]. Ann Surg Oncol, 2024, 31(3): 2069-2077. DOI: 10.1245/s10434-023-14553-6.
pmid: 37996643 |
[18] | Yu F, Yu C, Li F, et al. Wnt/β-catenin signaling in cancers and targeted therapies[J]. Signal Transduct Target Ther, 6(1): 307. DOI: 10.1038/s41392-021-00701-5. |
[19] | Campos NMF, Almeida V, Curvo Semedo L. Peritoneal disease: key imaging findings that help in the differential diagnosis[J]. Br J Radiol, 2022, 95(1130): 20210346. DOI: 10.1259/bjr.20210346. |
[20] | Zhao JJ, Ong CAJ, Srivastava S, et al. Spatially resolved niche and tumor microenvironmental alterations in gastric cancer peritoneal metastases[J]. Gastroenterology, 2024, 167(7): 1384-1398.e4. DOI: 10.1053/j.gastro.2024.08.007. |
[21] | Wang E, Shibutani M, Nagahara H, et al. Abundant intratumoral fibrosis prevents lymphocyte infiltration into peritoneal metastases of colorectal cancer[J]. PLoS One, 2021, 16(7): e0255049. DOI: 10.1371/journal.pone.0255049. |
[22] |
Chen Y, Cai G, Jiang J, et al. Proteomic profiling of gastric cancer with peritoneal metastasis identifies a protein signature associated with immune microenvironment and patient outcome[J]. Gastric Cancer, 2023, 26(4): 504-516. DOI: 10.1007/s10120-023-01379-0.
pmid: 36930369 |
[23] | Lv F, Li X, Wang Z, et al. Identification and validation of Rab GTPases RAB13 as biomarkers for peritoneal metastasis and immune cell infiltration in colorectal cancer patients[J]. Front Immunol, 2024, 15: 1403008. DOI: 10.3389/fimmu.2024.1403008. |
[24] | Natsume M, Shimura T, Iwasaki H, et al. Omental adipocytes promote peritoneal metastasis of gastric cancer through the CXCL2-VEGFA axis[J]. Br J Cancer, 2020, 123(3): 459-470. DOI: 10.1038/s41416-020-0898-3. |
[25] | Khabipov A, Trung DN, van der Linde J, et al. CCR4 blockade diminishes intratumoral macrophage recruitment and augments survival of syngeneic pancreatic cancer-bearing mice[J]. Biomedicines, 2023, 11(6): 1517. DOI: 10.3390/biomedicines11061517. |
[26] | Do-Thi VA, Park SM, Park SM, et al. IL9 polarizes macrophages to M1 and induces the infiltration of antitumor immune cells via MIP-1 and CXCR3 chemokines[J]. Cancer Res Commun, 2023, 3(1): 80-96. DOI: 10.1158/2767-9764.Crc-22-0246. |
[27] | Jeong M, Wang YY, Choi JY, et al. CC chemokine ligand 7 derived from cancer-stimulated macrophages promotes ovarian cancer cell invasion[J]. Cancers (Basel), 2021, 13(11): 2745. DOI: 10.3390/cancers13112745. |
[28] | Chen X, Lu Q, Zhou H, et al. A membrane-associated MHC -Ⅰ inhibitory axis for cancer immune evasion[J]. Cell, 186(18): 3903-3920.e21. DOI: 10.1016/j.cell.2023.07.016. |
[29] | Lenos KJ, Bach S, Ferreira Moreno L, et al. Molecular characterization of colorectal cancer related peritoneal metastatic disease[J]. Nat Commun, 2022, 13(1): 4443. DOI: 10.1038/s41467-022-32198-z. |
[30] | Almeida-Nunes DL, Mendes-Frias A, Silvestre R, et al. Immune tumor microenvironment in ovarian cancer ascites[J]. Int J Mol Sci, 2022, 23(18): 10692. DOI: 10.3390/ijms231810692. |
[31] | Chen X, Wang H, Huang Y, et al. Comprehensive roles and future perspectives of exosomes in peritoneal metastasis of gastric cancer[J]. Front Oncol, 2021, 11: 684871. DOI: 10.3389/fonc.2021.684871. |
[32] | Zhang J, Liu H, Wu Q, et al. Exosomal ANXA2 facilitates ovarian cancer peritoneal metastasis by activating peritoneal mesothelial cells through binding with TLR2[J]. Cell Commun Signal, 2024, 22(1): 616. DOI: 10.1186/s12964-024-01987-y. |
[33] | Nambara S, Masuda T, Hirose K, et al. Rab27b, a regulator of exosome secretion, is associated with peritoneal metastases in gastric cancer[J]. Cancer Genomics Proteomics, 2023, 20(1): 30-39. DOI: 10.21873/cgp.20362. |
[34] | Kwon M, Kim G, Kim R, et al. Phase Ⅱ study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer[J]. J Immunother Cancer, 2022, 10(7): e005041. DOI: 10.1136/jitc-2022-005041. |
[35] | Klein O, Kee D, Gao B, et al. Combination immunotherapy with nivolumab and ipilimumab in patients with rare gynecological malignancies: results of the CA209-538 clinical trial[J]. J Immunother Cancer, 2021, 9(11): e003156. DOI: 10.1136/jitc-2021-003156. |
[36] | Qiu MZ, Oh DY, Kato K, et al. Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first line treatment for advanced gastric or gastro-oesophageal junction adenocarcinoma: RATIONALE-305 randomised, double blind, phase 3 trial[J]. BMJ, 2024, 385: e078876. DOI: 10.1136/bmj-2023-078876. |
[37] | Fucà G, Cohen R, Lonardi S, et al. Ascites and resistance to immune checkpoint inhibition in dMMR/MSI-H metastatic colorectal and gastric cancers[J]. J Immunother Cancer, 2022, 10(2): e004001. DOI: 10.1136/jitc-2021-004001. |
[38] | Hagi T, Kurokawa Y, Kawabata R, et al. Multicentre biomarker cohort study on the efficacy of nivolumab treatment for gastric cancer[J]. Br J Cancer, 2020, 123(6): 965-972. DOI: 10.1038/s41416-020-0975-7. |
[39] | Dai Y, Liu Y, Gong Z, et al. Revalidation of the ATTRACTION-4 study in a real-world setting: a multicenter, retrospective propensity score matching study in China[J]. Front Immunol, 2023, 14: 1264929. DOI: 10.3389/fimmu.2023.1264929. |
[40] | Kang YK, Chen LT, Ryu MH, et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2022, 23(2): 234-247. DOI: 10.1016/S1470-2045(21)00692-6. |
[41] |
Shi Y, van der Meel R, Chen X, et al. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy[J]. Theranostics, 2020, 10(17): 7921-7924. DOI: 10.7150/thno.49577.
pmid: 32685029 |
[42] | Yamamoto M, Kurino T, Matsuda R, et al. Delivery of aPD-L1 antibody to i.p. tumors via direct penetration by i.p. route: beyond EPR effect[J]. J Control Release, 2022, 352: 328-337. DOI: 10. 1016/j.jconrel.2022.10.032. |
[43] |
Liang S, Xiao L, Chen T, et al. Injectable nanocomposite hydrogels improve intraperitoneal co-delivery of chemotherapeutics and immune checkpoint inhibitors for enhanced peritoneal metastasis therapy[J]. ACS Nano, 2024, 18(29): 18963-18979. DOI: 10.1021/acsnano.4c02312.
pmid: 39004822 |
[44] | Corbaux P, You B, Kepenekian V, et al. Tolerance and preliminary efficacy of intraperitoneall (IP) nivolumab after cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) in patients (pts) with advanced ovarian carcinoma: a phase Ⅰ study with expansion cohort (ICONIC)[J]. Ann Oncol, 2022, 33(Sup7): S825. DOI: 10.1016/j.annonc.2022.07.742. |
[45] | Chen C, Li Z, Xiong X, et al. Intraperitoneal PD-1 monoclonal antibody for the treatment of advanced primary liver cancer with malignant ascites: a single-arm, single-center, phase Ⅰb trial[J]. ESMO Open, 2024, 9(1): 102206. DOI: 10.1016/j.esmoop.2023. 102206. |
[46] | Jung M, Yang Y, McCloskey JE, et al. Chimeric antigen receptor T cell therapy targeting ICAM-1 in gastric cancer[J]. Mol Ther Oncolytics, 2020, 18: 587-601. DOI: 10.1016/j.omto.2020.08.009. |
[47] | Ma Q, He X, Zhang B, et al. A PD-L1-targeting chimeric switch receptor enhances efficacy of CAR-T cell for pleural and peritoneal metastasis[J]. Signal Transduct Target Ther, 2022, 7(1): 380. DOI: 10.1038/s41392-022-01198-2. |
[48] |
Qi C, Gong J, Li J, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results[J]. Nat Med, 2022, 28(6): 1189-1198. DOI: 10.1038/s41591-022-01800-8.
pmid: 35534566 |
[49] | Li C, Zhou F, Wang J, et al. Novel CD19-specific γ/δ TCR-T cells in relapsed or refractory diffuse large B-cell lymphoma[J]. J Hematol Oncol, 2023, 16(1): 5. DOI: 10.1186/s13045-023-01402-y. |
[50] |
Ishihara M, Nishida Y, Kitano S, et al. A phase 1 trial of NY-ESO-1-specific TCR-engineered T-cell therapy combined with a lymph node-targeting nanoparticulate peptide vaccine for the treatment of advanced soft tissue sarcoma[J]. Int J Cancer, 2023, 152(12): 2554-2566. DOI: 10.1002/ijc.34453.
pmid: 36727538 |
[51] | Hong DS, Tine BAV, Olszanski AJ, et al. Phase Ⅰ dose escalation and expansion trial to assess the safety and efficacy of ADP-A2M4 SPEAR T cells in advanced solid tumors[J]. J Clin Oncol, 2020, 38(15_suppl): 102-102. DOI: 10.1200/JCO.2020.38.15_suppl.102. |
[52] |
Parkhurst M, Goff SL, Lowery FJ, et al. Adoptive transfer of persona-lized neoantigen-reactive TCR-transduced T cells in metastatic colorectal cancer: phase 2 trial interim results[J]. Nat Med, 2024, 30(9): 2586-2595. DOI: 10.1038/s41591-024-03109-0.
pmid: 38992129 |
[53] |
He Z, Wang S, Qiao G, et al. Clinical efficacy of intra-cavitary infusions of autologous dendritic cell/cytokine-induced killer cell products for the treatment of refractory malignant pleural effusions and ascites[J]. Am J Transl Res, 2020, 12(7): 3940-3952.
pmid: 32774747 |
[54] |
Huang SM, Jeng LB, Shyu WC, et al. Combination treatment of pembrolizumab with DC-CIK cell therapy for advanced hepatocellular carcinoma: a case report[J]. Biomedicine (Taipei), 2023, 13(3): 57-62. DOI: 10.37796/2211-8039.1414.
pmid: 37937058 |
[55] | Mehling B, Wu D, O'Gorman E, et al. Case report: dendritic cell-cytokine induced killer cell therapy in subjects with chronic lymphocytic leukemia and peritoneal cancer[J]. Front Med (Lausanne), 2023, 10: 1240330. DOI: 10.3389/fmed.2023.1240330. |
[56] | Jung M, Lee JB, Kim HS, et al. First-in-human phase 1 study of a B cell-and monocyte-based immunotherapeutic vaccine against HER2-positive advanced gastric cancer[J]. Cancer Res treat, 2024, 56(1): 208-218. DOI: 10.4143/crt.2022.1328. |
[57] |
Redman JM, Tsai YT, Weinberg BA, et al. A randomized phase Ⅱ trial of mFOLFOX6 + bevacizumab alone or with AdCEA vaccine + avelumab immunotherapy for untreated metastatic colorectal cancer[J]. Oncologist, 2022, 27(3): 198-209. DOI: 10.1093/oncolo/oyab046.
pmid: 35274710 |
[58] |
Hubbard JM, Tőke ER, Moretto R, et al. Safety and activity of PolyPEPI1018 combined with maintenance therapy in metastatic colorectal cancer: an open-label, multicenter, phase Ⅰb study[J]. Clin cancer Res, 2022, 28(13): 2818-2829. DOI: 10.1158/1078-0432.Ccr-22-0112.
pmid: 35472243 |
[59] | Li X, Ji Z, Li Y. Peritoneal carcinomatosis diagnosis and treatment in China: focusing on training and collaboration[J]. Indian J Surg Oncol, 2019, 10(Suppl 1): 12-18. DOI: 10.1007/s13193-019-00890-0. |
[60] |
Luo Q, Zhang L, Luo C, et al. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy[J]. Cancer Lett, 2019, 454: 191-203. DOI: 10.1016/j.canlet.2019.04.017.
pmid: 30998963 |
[61] | Zhou J, Wang J, Wang W, et al. Pathological complete response achieved with XELOX chemotherapy, HIPEC, and anti-PD-1 immunotherapy in stage Ⅳ gastric adenocarcinoma with peritoneal metastasis: a case report and review of the literature[J]. J Gastrointest Cancer, 2024, 55(3): 1441-1447. DOI: 10.1007/s12029-024-01056-0. |
[62] | Arno MC, Inam M, Weems AC, et al. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties[J]. Nat Commun, 2020, 11(1): 1420. DOI: 10.1038/s41467-020-15206-y. |
[63] | Yu W, Uzun Y, Zhu Q, et al. scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data[J]. Genome Biol, 2020, 21(1): 94. DOI: 10.1186/s13059-020-02008-0. |
[1] | Li Jinxin, Gu Fenfen. Efficacy of sintilimab combined with docetaxel in the treatment of cervical cancer and its impact on laboratory indicators [J]. Journal of International Oncology, 2025, 52(6): 366-373. |
[2] | Esophageal Cancer Professional Committee of the Sichuan Anti-Cancer Association. Expert consensus on the diagnosis and treatment strategies for advanced esophageal squamous cell carcinoma following progression on first-line immunochemotherapy in Sichuan Province [J]. Journal of International Oncology, 2025, 52(5): 273-281. |
[3] | Chen Ruyan, Fu Zhenming. Current status and advances in immunotherapy for advanced renal cell carcinoma [J]. Journal of International Oncology, 2025, 52(2): 124-128. |
[4] | Wang Qiushi, Xu Ruitao, Li Song, Chu Jiahui, Liu Lian. Research progress of immune checkpoint inhibitor-related multi-organ adverse events [J]. Journal of International Oncology, 2024, 51(8): 510-514. |
[5] | Mo Huimin, Cai Yusen, Zhang Zengrui, Zhu Wentian. Research progress of the combined application of immune checkpoint inhibitors in the treatment of hepatocellular carcinoma with portal vein tumor thrombus [J]. Journal of International Oncology, 2024, 51(8): 520-525. |
[6] | Han Yi, Zhang Tongmei, Qi Fei, Zhang Yong. Advances in clinical molecular diagnosis and treatment of pulmonary large cell neuroendocrine carcinoma [J]. Journal of International Oncology, 2024, 51(7): 468-473. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[9] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[10] | Xie Shuping, Sun Yahong, Wang Chao. Prediction of efficacy of early-stage tumor markers combined with NLR and PLR for immunotherapy in gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 157-165. |
[11] | Chen Xinyi, Weng Yiming, Wei Jiayan, Wang Jinsong, Peng Min. Advances in immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 553-557. |
[12] | Deng Juanjun, Zhao Dayong, Li Miao. Adverse reactions and risk factors of immune checkpoint inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2023, 50(9): 564-568. |
[13] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[14] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. |
[15] | Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma [J]. Journal of International Oncology, 2023, 50(5): 299-303. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||