
Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (2): 122-125.doi: 10.3760/cma.j.cn371439-20221024-00025
• Reviews • Previous Articles Next Articles
					
													Zhang Yuxiao, Zhang Liansheng(
), Li Lijuan(
)
												  
						
						
						
					
				
Received:2022-10-24
															
							
																	Revised:2022-12-12
															
							
															
							
																	Online:2023-02-08
															
							
																	Published:2023-03-22
															
						Contact:
								Zhang Liansheng,Email:Supported by:Zhang Yuxiao, Zhang Liansheng, Li Lijuan. Research status and application prospect of a novel immune checkpoint TIGIT in the immunotherapy of multiple myeloma[J]. Journal of International Oncology, 2023, 50(2): 122-125.
| [1] |  
											中国多发性骨髓瘤诊治指南不断完善[J]. 中华医学信息导报, 2022, 37(10): 4. DOI: 10.3760/cma.j.issn.1000-8039.2022.10.136. 
																							 doi: 10.3760/cma.j.issn.1000-8039.2022.10.136  | 
										
| [2] |  
											 郭红艳, 李莉娟, 黄紫莹, 等. 多发性骨髓瘤的免疫治疗研究现状[J]. 中国临床研究, 2021, 34(5): 676-680. DOI: 10.13429/j.cnki.cjcr.2021.05.024. 
																							 doi: 10.13429/j.cnki.cjcr.2021.05.024  | 
										
| [3] |  
											 王约拿, 刘佳, 李莉娟, 等. TIGIT对血液淋巴系统恶性肿瘤的免疫调节作用[J]. 中国临床研究, 2022, 35(6): 854-857. DOI: 10.13429/j.cnki.cjcr.2022.06.026. 
																							 doi: 10.13429/j.cnki.cjcr.2022.06.026  | 
										
| [4] |  
											 Shiravand Y, Khodadadi F, Kashani SMA, et al.  Immune checkpoint inhibitors in cancer therapy[J]. Curr Oncol, 2022, 29(5): 3044-3060. DOI: 10.3390/curroncol29050247. 
																							 doi: 10.3390/curroncol29050247 pmid: 35621637  | 
										
| [5] |  
											 Shi AP, Tang XY, Xiong YL, et al.  Immune checkpoint LAG3 and its ligand FGL1 in cancer[J]. Front Immunol, 2021, 12: 785091. DOI: 10.3389/fimmu.2021.785091. 
																							 doi: 10.3389/fimmu.2021.785091  | 
										
| [6] |  
											 Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000957. DOI: 10.1136/jitc-2020-000957. 
																							 doi: 10.1136/jitc-2020-000957  | 
										
| [7] |  
											 Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 255. DOI: 10.1186/s13046-019-1259-z. 
																							 doi: 10.1186/s13046-019-1259-z  | 
										
| [8] | 刘珊, 施怡玢, 尚晋, 等. TIGIT信号途径介导多发性骨髓瘤免疫逃逸的研究进展[J]. 现代免疫学, 2021, 41(6): 529-532. | 
| [9] |  
											 Solomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside[J]. Cancer Immunol Immunother, 2018, 67(11): 1659-1667. DOI: 10.1007/s00262-018-2246-5. 
																							 doi: 10.1007/s00262-018-2246-5 pmid: 30232519  | 
										
| [10] |  
											 王立韬, 白丽. 用于肿瘤治疗的免疫检查点及其抑制剂研究进展[J]. 细胞与分子免疫学杂志, 2021, 37(7): 663-670. DOI: 10.13423/j.cnki.cjcmi.009232. 
																							 doi: 10.13423/j.cnki.cjcmi.009232  | 
										
| [11] |  
											 Rotte A, Sahasranaman S, Budha N. Targeting TIGIT for immuno-therapy of cancer: update on clinical development[J]. Biomedicines, 2021, 9(9): 1277. DOI: 10.3390/biomedicines 9091277. 
																							 doi: 10.3390/biomedicines 9091277  | 
										
| [12] |  
											 Chiang EY, Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy[J]. J Immunother Cancer, 2022, 10(4): e004711. DOI: 10.1136/jitc-2022-004711. 
																							 doi: 10.1136/jitc-2022-004711  | 
										
| [13] |  
											 耿素霞, 杜欣. 2020年血液肿瘤靶向免疫检查点治疗研究进展[J]. 循证医学, 2021, 21(1): 45-49. DOI: 10.12019/j.issn.1671-5144.2021.01.012. 
																							 doi: 10.12019/j.issn.1671-5144.2021.01.012  | 
										
| [14] |  
											 Harjunpää H, Guillerey C. TIGIT as an emerging immune check-point[J]. Clin Exp Immunol, 2020, 200(2): 108-119. DOI: 10.1111/cei.13407. 
																							 doi: 10.1111/cei.13407 pmid: 31828774  | 
										
| [15] |  
											 Jeong BS, Nam H, Lee J, et al.  Structural and functional charac-terization of a monoclonal antibody blocking TIGIT[J]. MAbs, 2022, 14(1): 2013750. DOI: 10.1080/19420862.2021.2013750. 
																							 doi: 10.1080/19420862.2021.2013750  | 
										
| [16] |  
											 Stanietsky N, Rovis TL, Glasner A, et al.  Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR[J]. Eur J Immunol, 2013, 43(8): 2138-2150. DOI: 10.1002/eji.201243072. 
																							 doi: 10.1002/eji.201243072 pmid: 23677581  | 
										
| [17] |  
											 Holder KA, Burt K, Grant MD. TIGIT blockade enhances NK cell activity against autologous HIV-1-infected CD4+ T cells[J]. Clin Transl Immunology, 2021, 10(10): e1348. DOI: 10.1002/cti2.1348. 
																							 doi: 10.1002/cti2.1348  | 
										
| [18] |  
											 Sarhan D, Cichocki F, Zhang B, et al.  Adaptive NK cells with low TIGIT expression are inherently resistant to myeloid-derived suppressor cells[J]. Cancer Res, 2016, 76(19): 5696-5706. DOI: 10.1158/0008-5472.CAN-16-0839. 
																							 doi: 10.1158/0008-5472.CAN-16-0839 pmid: 27503932  | 
										
| [19] |  
											 Liu S, Zhang H, Li M, et al.  Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells[J]. Cell Death Differ, 2013, 20(3): 456-464. DOI: 10.1038/cdd.2012.141. 
																							 doi: 10.1038/cdd.2012.141 pmid: 23154388  | 
										
| [20] |  
											 Yeo J, Ko M, Lee DH, et al.  TIGIT/CD226 axis regulates anti-tumor immunity[J]. Pharmaceuticals (Basel), 2021, 14(3): 200. DOI: 10.3390/ph14030200. 
																							 doi: 10.3390/ph14030200  | 
										
| [21] |  
											 Kumar S. Natural killer cell cytotoxicity and its regulation by inhi-bitory receptors[J]. Immunology, 2018, 154(3): 383-393. DOI: 10.1111/imm.12921. 
																							 doi: 10.1111/imm.12921  | 
										
| [22] |  
											 Xu L, Liu L, Yao D, et al.  PD-1 and TIGIT are highly co-expressed on CD8+ T cells in AML patient bone marrow[J]. Front Oncol, 2021, 11: 686156. DOI: 10.3389/fonc.2021.686156. 
																							 doi: 10.3389/fonc.2021.686156  | 
										
| [23] |  
											 Minnie SA, Kuns RD, Gartlan KH, et al.  Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade[J]. Blood, 2018, 132(16): 1675-1688. DOI: 10.1182/blood-2018-01-825240. 
																							 doi: 10.1182/blood-2018-01-825240 pmid: 30154111  | 
										
| [24] |  
											 Ramsbottom KM, Hawkins ED, Shimoni R, et al.  Cutting edge: DNAX accessory molecule 1-deficient CD8+ T cells display immunological synapse defects that impair antitumor immunity[J]. J Immunol, 2014, 192(2): 553-557. DOI: 10.4049/jimmunol.1302197. 
																							 doi: 10.4049/jimmunol.1302197 pmid: 24337740  | 
										
| [25] |  
											 Jin HS, Ko M, Choi DS, et al.  CD226hiCD8+ T cells are a pre-requisite for anti-TIGIT immunotherapy[J]. Cancer Immunol Res, 2020, 8(7): 912-925. DOI: 10.1158/2326-6066.CIR-19-0877. 
																							 doi: 10.1158/2326-6066.CIR-19-0877  | 
										
| [26] |  
											 Joller N, Lozano E, Burkett PR, et al.  Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses[J]. Immunity, 2014, 40(4): 569-581. DOI: 10.1016/j.immuni.2014.02.012. 
																							 doi: 10.1016/j.immuni.2014.02.012 pmid: 24745333  | 
										
| [27] |  
											 Qin S, Xu L, Yi M, et al.  Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019, 18(1): 155. DOI: 10.1186/s12943-019-1091-2. 
																							 doi: 10.1186/s12943-019-1091-2 pmid: 31690319  | 
										
| [28] |  
											 Guillerey C, Harjunpää H, Carrié N, et al.  TIGIT immune check-point blockade restores CD8+ T-cell immunity against multiple myeloma[J]. Blood, 2018, 132(16): 1689-1694. DOI: 10.1182/blood-2018-01-825265. 
																							 doi: 10.1182/blood-2018-01-825265 pmid: 29986909  | 
										
| [29] |  
											 卢惠, 王华芳. 免疫检查点分子TIGIT在血液恶性肿瘤中的研究进展[J]. 中国实验血液学杂志, 2021, 29(3): 993-997. DOI: 10.19746/j.cnki.issn1009-2137.2021.03.054. 
																							 doi: 10.19746/j.cnki.issn1009-2137.2021.03.054  | 
										
| [30] |  
											 Khan M, Arooj S, Wang H. NK cell-based immune checkpoint inhibition[J]. Front Immunol, 2020, 11: 167. DOI: 10.3389/fimmu.2020.00167. 
																							 doi: 10.3389/fimmu.2020.00167 pmid: 32117298  | 
										
| [31] |  
											 Lozano E, Mena MP, Díaz T, et al.  Nectin-2 expression on malignant plasma cells is associated with better response to TIGIT blockade in multiple myeloma[J]. Clin Cancer Res, 2020, 26(17): 4688-4698. DOI: 10.1158/1078-0432.CCR-19-3673. 
																							 doi: 10.1158/1078-0432.CCR-19-3673 pmid: 32513837  | 
										
| [32] |  
											 Pazina T, MacFarlane AW 4th, Bernabei L, et al.  Alterations of NK cell phenotype in the disease course of multiple myeloma[J]. Cancers (Basel), 2021, 13(2): 226. DOI: 10.3390/cancers13020226. 
																							 doi: 10.3390/cancers13020226  | 
										
| [33] |  
											 Ge Z, Peppelenbosch MP, Sprengers D, et al.  TIGIT, the next step towards successful combination immune checkpoint therapy in cancer[J]. Front Immunol, 2021, 12: 699895. DOI: 10.3389/fimmu.2021.699895. 
																							 doi: 10.3389/fimmu.2021.699895  | 
										
| [34] |  
											 邓铃. 多发性骨髓瘤患者骨髓间充质干细胞通过TIGIT/CD226调节NK细胞功能的研究[D]. 天津: 天津医科大学, 2020. DOI: 10.27366/d.cnki.gtyku.2020.000608. 
																							 doi: 10.27366/d.cnki.gtyku.2020.000608  | 
										
| [35] |  
											 Chauvin JM, Ka M, Pagliano O, et al.  IL15 stimulation with TIGIT blockade reverses CD155-mediated NK-cell dysfunction in melanoma[J]. Clin Cancer Res, 2020, 26(20): 5520-5533. DOI: 10.1158/1078-0432.CCR-20-0575. 
																							 doi: 10.1158/1078-0432.CCR-20-0575  | 
										
| [36] |  
											 Niu J, Maurice-Dror C, Lee DH, et al.  First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer[J]. Ann Oncol, 2022, 33(2): 169-180. DOI: 10.1016/j.annonc.2021.11.002. 
																							 doi: 10.1016/j.annonc.2021.11.002  | 
										
| [37] |  
											 Lee JB, Ha SJ, Kim HR. Clinical insights into novel immune checkpoint inhibitors[J]. Front Pharmacol, 2021, 12: 681320. DOI: 10.3389/fphar.2021.681320. 
																							 doi: 10.3389/fphar.2021.681320  | 
										
| [1] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. | 
| [2] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. | 
| [3] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. | 
| [4] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. | 
| [5] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. | 
| [6] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. | 
| [7] | Ren Lu, Xie Xiaoli, Zhang Kun, Wang Lijuan. Effects and mechanisms of dihydroartemisinin combined with carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma cells [J]. Journal of International Oncology, 2024, 51(3): 129-136. | 
| [8] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. | 
| [9] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. | 
| [10] | Cui Tenglu, Lyu lu, Sun Pengfei. Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 548-552. | 
| [11] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. | 
| [12] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. | 
| [13] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. | 
| [14] | Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma [J]. Journal of International Oncology, 2023, 50(5): 299-303. | 
| [15] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||