Journal of International Oncology ›› 2017, Vol. 44 ›› Issue (3): 205-208.doi: 10.3760/cma.j.issn.1673422X.2017.03.012
Previous Articles Next Articles
Wang Wei, Yang Xuejun
Online:
2017-03-08
Published:
2017-02-28
Contact:
Yang Xuejun
E-mail:ydenny@126.com
Supported by:
National Natural Science
Foundation of China (81472352)
Wang Wei, Yang Xuejun. Role of sodium hydrogen exchanger isoform 1 in tumor microenvironment[J]. Journal of International Oncology, 2017, 44(3): 205-208.
[1] Parks SK, Chiche J, Pouysségur J. Disrupting proton dynamics and energy metabolism for cancer therapy[J]. Nat Rev Cancer, 2013, 13(9): 611 -623. DOI: 10.1038/nrc3579. [2] Webb BA, Chimenti M, Jacobson MP, et al. Dysregulated pH: a perfect storm for cancer progression[J]. Nat Rev Cancer, 2011, 11(9): 671-677. DOI: 10.1038/nrc3110. [3] Cong D, Zhu W, Kuo JS, et al. Ion transporters in brain tumors[J]. Curr Med Chem, 2015, 22(10): 1171-1181. [4] Parker MD, Myers EJ, Schelling JR. Na+H+ exchanger1 (NHE1) regulation in kidney proximal tubule[J]. Cell Mol Life Sci, 2015, 72(11): 2061-2074. DOI: 10.1007/s0001801518488. [5] Amith SR, Fliegel L. Regulation of the Na+/H+ exchanger (NHE1) in breast cancer metastasis[J]. Cancer Res, 2013, 73(4): 1259-1264. DOI: 10.1158/00085472.CAN124031. [6] Xu J, Ji B, Wen G, et al. Na+/H+ exchanger 1, Na+/Ca2+ exchanger 1 and calmodulin complex regulates interleukin 6mediated cellular behavior of human hepatocellular carcinoma[J]. Carcinogenesis, 2016, 37(3): 290 -300. DOI: 10.1093/carcin/bgw004. [7] Matsushita M, Tanaka H, Mitsui K, et al. Dual functional significance of calcineurin homologous protein 1 binding to Na(+)/H(+) exchanger isoform 1[J]. Am J Physiol Cell Physiol, 2011, 301(2): C280-288. DOI: 10.1152/ajpcell.00404.2010. [8] Vargas LA, Díaz RG, Swenson ER, et al. Inhibition of carbonic anhydrase prevents the Na(+)/H(+) exchanger 1dependent slow force response to rat myocardial stretch[J]. Am J Physiol Heart Circ Physiol, 2013, 305(2): H228-237. DOI: 10.1152/ajpheart.00055.2013. [9] Beaty BT, Wang Y, BravoCordero JJ, et al. Talin regulates moesinNHE1 recruitment to invadopodia and promotes mammary tumor metastasis[J]. J Cell Biol, 2014, 205(5): 737-751. DOI: 10.1083/jcb.201312046. [10] Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers[J]. Pflugers Arch, 2014, 466(1): 61-76. DOI: 10.1007/s0042401314088. [11] Rose KL, Watson AJ, Drysdale TA, et al. Simulated diabetic ketoacidosis therapy in vitro elicits brain cell swelling via sodiumhydrogen exchange and anion transport[J]. Am J Physiol Endocrinol Metab, 2015, 309(4): E370-379. DOI: 10.1152/ajpendo.00107.2015. [12] Yi YH, Chang YS, Lin CH, et al. Integrinmediated membrane blebbing is dependent on sodiumproton exchanger 1 and sodiumcalcium exchanger 1 activity[J]. J Biol Chem, 2012, 287(13): 10316-10324. DOI: 10.1074/jbc.M111.244962. [13] Chang G, Wang J, Zhang H, et al. CD44 targets Na(+)/H(+) exchanger 1 to mediate MDAMB231 cells′ metastasis via the regulation of ERK1/2[J ]. Br J Cancer, 2014, 110(4): 916-927. DOI: 10.1038/bjc.2013.809. [14] McGrail DJ, McAndrews KM, Brandenburg CP, et al. Osmotic regulation is required for cancer cell survival under solid stress[J]. Biophys J, 2015, 109(7): 1334-1337. DOI: 10.1016/j.bpj.2015.07.046. [15] Amith SR, Fong S, Baksh S, et al. Na(+)/H(+) exchange in the tumour microenvironment: does NHE1 drive breast cancer carcinogenesis?[J]. Int J Dev Biol, 2015, 59(79): 367-377. DOI: 10.1387/ijdb.140336lf. [16] Liberti MV, Locasale JW. The Warburg Effect: how does it benefit cancer cells?[J]. Trends Biochem Sci, 2016, 41(3): 211-218. DOI: 10.1016/j.tibs.2015.12.001. [17] Reshkin SJ, Greco MR, Cardone RA. Role of pHi, and proton transporters in oncogenedriven neoplastic transformation[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1638): 20130100. DOI: 10.1098/rstb.2013.0100. [18] Yang X, Wang D, Dong W, et al. Overexpression of Na+/H+ exchanger 1 and its clinicopathologic significance in hepatocellular carcinoma[J]. Med Oncol, 2010, 27(4): 1109-1113. DOI: 10.1007/s1203200993434. [19] Xia J, Huang N, Huang H, et al. Voltagegated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1mediated upregulation of NHE1[J]. Int J Cancer, 2016, 139(11): 2553-2569. DOI: 10.1002/ijc.30381. [20] Cardone RA, Greco MR, Zeeberg K, et al. A novel NHE1centered signaling cassette drives epidermal growth factor receptordependent pancreatic tumor metastasis and is a target for combination therapy[J]. Neoplasia, 2015, 17(2): 155-166. DOI: 10.1016/j.neo.2014.12.003. [21] Zhu W, Carney KE, Pigott VM, et al. Gliomamediated microglial activation promotes glioma proliferation and migration: roles of Na+/H+ exchanger isoform 1[J]. Carcinogenesis, 2016, 37(9): 839-851. DOI: 10.1093/carcin/bgw068. [22] 朱蒙, 杨学军. 钙信号在恶性肿瘤侵袭迁移中的作用[J]. 国际肿瘤学杂志, 2014, 41(3): 161-164. DOI: 10.3760/cma.j.issn.1673422X.2014.03.001. [23] Lin Y, Chang G, Wang J, et al. NHE1 mediates MDAMB231 cells invasion through the regulation of MT1MMP[J]. Exp Cell Res, 2011, 317 (14): 2031-2040. DOI: 10.1016/j.yexcr.2011.05.026. [24] Provost JJ, Rastedt D, Canine J, et al. Urokinase plasminogen activator receptor induced nonsmall cell lung cancer invasion and metastasis requires NHE1 transporter expression and transport activity[J] . Cell Oncol (Dordr), 2012, 35(2): 95-110. DOI: 10.1007/s134020110068y. [25] Ludwig FT, Schwab A, Stock C. The Na+/H+ exchanger (NHE1) generates pH nanodomains at focal adhesions[J]. J Cell Physiol, 2013, 228(6): 1351-1358. DOI: 10.1002/jcp.24293. [26] Chang F, Minc N. Electrochemical control of cell and tissue polarity [J]. Annu Rev Cell Dev Biol, 2014, 30: 317-336. DOI: 10.1146/annurevcellbio100913013357. [27] Wallert MA, Hammes D, Nguyen T, et al. RhoA Kinase (Rock) and p90 Ribosomal S6 Kinase (p90Rsk) phosphorylation of the sodium hydrogen exchanger (NHE1) is required for lysophosphatidic acidinduced transport, cytoskeletal organization and migration[J]. Cell Signal, 2015, 27(3): 498-509. DOI: 10.1016/j.cellsig.2015.01.002. [28] Magalhaes MA, Larson DR, Mader CC, et al. Cortactin phosphorylation regulates cell invasion through a pHdependent pathway[ J]. J Cell Biol, 2011, 195(5): 903-920. DOI: 10.1083/jcb.201103045. [29] Zhang S, Liu F, Mao X, et al. Elevation of miR27b by HPV16 E7 inhibits PPARγ expression and promotes proliferation and invasion in cervical carcinoma cells[J]. Int J Oncol, 2015, 47(5): 1759-1766. DOI: 10.3892/ijo.2015.3162. [30] Lin Y, Wang J, Jin W, et al. NHE1 mediates migration and invasion of HeLa cells via regulating the expression and localization of MT1MMP[J]. Cell Biochem Funct, 2012, 30(1): 41-46. DOI: 10.1002/cbf.1815. [31] Amith SR, Wilkinson JM, Fliegel L. Na+/H+ exchanger NHE1 regulation modulates metastatic potential and epithelialmesenchymal transition of triplenegative breast cancer cells[J]. Oncotarget, 2016, 7(16): 21091- 21113. DOI: 10.18632/oncotarget.8520. [32] Andersen AP, Flinck M, Oernbo EK, et al. Roles of acidextrudingion transporters in regulation of breast cancer cell growth in a 3dimensional microenvironment[J]. Mol Cancer, 2016, 15(1): 45. DOI: 10.1186/s1294301605280. [33] Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity[J]. Cell, 2011, 147(5): 992-1009. DOI: 10.1016/j.cell.2011.11.016. [34] Thompson EG, Sontheimer H. A role for ion channels in perivascular glioma invasion[J]. Eur Biophys J, 2016, 45(7): 635-648. DOI: 10.1007/s002490161154x. |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[4] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[5] | Xiang Yuling, Tan Jiajie, Xiong Yuanguo, Zhao Lirong, Li Chen, Zhang Hong. Effects of Anhydroicaritin on the proliferation, migration and apoptosis of hepatocellular carcinoma cells [J]. Journal of International Oncology, 2023, 50(9): 513-519. |
[6] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[7] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[8] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[9] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[11] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[14] | Zhao Jianhao, Duan Yanchao. Research progress in the pathogenesis of extramedullary disease in multiple myeloma [J]. Journal of International Oncology, 2023, 50(1): 55-59. |
[15] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||