Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (6): 377-380.doi: 10.3760/cma.j.cn371439-20200923-00073
• Reviews • Previous Articles Next Articles
Wang Fang, Wang Peng, Kang Xiaojing()
Received:
2020-09-23
Revised:
2020-10-16
Online:
2021-06-08
Published:
2021-06-24
Contact:
Kang Xiaojing
E-mail:drkangxj666@163.com
Supported by:
Wang Fang, Wang Peng, Kang Xiaojing. Mechanism and immunotherapy of Kaposi sarcoma-associated herpesvirus and host immunity in the pathogenesis of Kaposi sarcoma[J]. Journal of International Oncology, 2021, 48(6): 377-380.
[1] |
Yarchoan R, Uldrick TS. HIV-associated cancers and related diseases[J]. N Engl J Med, 2018,378(11):1029-1041. DOI: 10.1056/NEJMra1615896.
doi: 10.1056/NEJMra1615896 |
[2] |
Cesarman E, Damania B, Krown SE, et al. Kaposi sarcoma[J]. Nat Rev Dis Primers, 2019,5(1):9. DOI: 10.1038/s41572-019-0060-9.
doi: 10.1038/s41572-019-0060-9 pmid: 30705286 |
[3] |
Wong JP, Damania B. Modulation of oncogenic signaling networks by Kaposi's sarcoma-associated herpesvirus[J]. Biol Chem, 2017,398(8):911-918. DOI: 10.1515/hsz-2017-0101.
doi: 10.1515/hsz-2017-0101 |
[4] |
Zhang H, Ni G, Damania B. ADAR1 facilitates KSHV lytic reactivation by modulating the RLR-dependent signaling pathway[J]. Cell Rep, 2020,31(4):107564. DOI: 10.1016/j.celrep.2020.107564.
doi: 10.1016/j.celrep.2020.107564 |
[5] |
Broussard G, Damania B. KSHV: immune modulation and immunotherapy[J]. Front Immunol, 2020,10:3084. DOI: 10.3389/fimmu.2019.03084.
doi: 10.3389/fimmu.2019.03084 |
[6] |
Uppal T, Sarkar R, Dhelaria R, et al. Role of pattern recognition receptors in KSHV infection[J]. Cancers (Basel), 2018,10(3):85. DOI: 10.3390/cancers10030085.
doi: 10.3390/cancers10030085 |
[7] |
Sharma NR, Majerciak V, Kruhlak MJ, et al. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation[J]. PLoS Pathog, 2017,13(10):e1006677. DOI: 10.1371/journal.ppat.1006677.
doi: 10.1371/journal.ppat.1006677 |
[8] |
Griffin C, Eter L, Lanzetta N, et al. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice [J]. J Biol Chem, 2018,293(23):8775-8786. DOI: 10.1074/jbc.RA117.001526.
doi: 10.1074/jbc.RA117.001526 |
[9] |
Lee HR, Amatya R, Jung JU. Multi-step regulation of innate immune signaling by Kaposi's sarcoma-associated herpesvirus[J]. Virus Res, 2015,209:39-44. DOI: 10.1016/j.virusres.2015.03.004.
doi: 10.1016/j.virusres.2015.03.004 |
[10] |
Zhao Q, Liang D, Sun R, et al. Kaposi's sarcoma-associated herpesvirus-encoded replication and transcription activator impairs innate immunity via ubiquitin-mediated degradation of myeloid differentiation factor 88[J]. J Virol, 2015,89(1):415-427. DOI: 10.1128/JVI.02591-14.
doi: 10.1128/JVI.02591-14 |
[11] |
Lingel A, Ehlers E, Wang Q, et al. Kaposi's sarcoma-associated herpesvirus reduces cellular myeloid differentiation primary-response gene 88 (MyD88) expression via modulation of its RNA[J]. J Virol, 2016,90(1):180-188. DOI: 10.1128/JVI.02342-15.
doi: 10.1128/JVI.02342-15 |
[12] |
Rex DAB, Agarwal N, Prasad TSK, et al. A comprehensive pathway map of IL-18-mediated signalling[J]. J Cell Commun Signal, 2020,14(2):257-266. DOI: 10.1007/s12079-019-00544-4.
doi: 10.1007/s12079-019-00544-4 pmid: 31863285 |
[13] |
Ma Z, Hopcraft SE, Yang F, et al. NLRX1 negatively modulates type Ⅰ IFN to facilitate KSHV reactivation from latency[J]. PLoS Pathog, 2017,13(5):e1006350. DOI: 10.1371/journal.ppat.1006350.
doi: 10.1371/journal.ppat.1006350 |
[14] |
Baillet N, Krieger S, Carnec X, et al. E3 ligase ITCH interacts with the z matrix protein of lassa and mopeia viruses and is required for the release of infectious particles[J]. Viruses, 2019,12(1):49. DOI: 10.3390/v12010049.
doi: 10.3390/v12010049 |
[15] |
Zhang G, Chan B, Samarina N, et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus lana recruit and antagonize the innate immune DNA sensor cGAS[J]. Proc Natl Acad Sci U S A, 2016,113(8):E1034-E1043. DOI: 10.1073/pnas.1516812113.
doi: 10.1073/pnas.1516812113 |
[16] |
Subramanian G, Kuzmanovic T, Zhang Y, et al. A new mechanism of interferon's antiviral action: induction of autophagy, essential for paramyxovirus replication, is inhibited by the interferon stimulated gene, TDRD7[J]. PLoS Pathog, 2018,14(1):e1006877. DOI: 10.1371/journal.ppat.1006877.
doi: 10.1371/journal.ppat.1006877 |
[17] |
Manes TD, Hoer S, Muller WA, et al. Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins block distinct steps in transendo-thelial migration of effector memory CD4+ T cells by targeting diffe-rent endothelial proteins [J]. J Immunol, 2010,184(9):5186-5192. DOI: 10.4049/jimmunol.0902938.
doi: 10.4049/jimmunol.0902938 |
[18] |
Qin J, Li W, Gao SJ, et al. KSHV microRNAs: tricks of the devil[J]. Trends Microbiol, 2017,25(8):648-661. DOI: 10.1016/j.tim.2017.02.002.
doi: 10.1016/j.tim.2017.02.002 |
[19] | De Pelsmaeker S, Romero N, Vitale M, et al. Herpesvirus evasion of natural killer cells[J]. J Virol, 2018,92(11):e02105-e02117. DOI: 10.1128/JVI.02105-17. |
[20] |
Lee MS, Jones T, Song DY, et al. Exploitation of the complement system by oncogenic Kaposi's sarcoma-associated herpesvirus for cell survival and persistent infection[J]. PLoS Pathog, 2014,10(9):e1004412. DOI: 10.1371/journal.ppat.1004412.
doi: 10.1371/journal.ppat.1004412 |
[21] |
Jeon H, Yoo SM, Choi HS, et al. Extracellular vesicles from kshv-infected endothelial cells activate the complement system[J]. Oncotarget, 2017,8(59):99841-99860. DOI: 10.18632/oncotarget.21668.
doi: 10.18632/oncotarget.v8i59 |
[22] |
Yoo SM, Lee MS. Kaposi's sarcoma-associated herpesvirus and host interaction by the complement system[J]. Pathogens, 2020,9(4):260. DOI: 10.3390/pathogens9040260.
doi: 10.3390/pathogens9040260 |
[23] |
Davis DA, Mishra S, Anagho HA, et al. Restoration of immune surface molecules in Kaposi sarcoma-associated herpes virus infected cells by lenalidomide and pomalidomide[J]. Oncotarget, 2017,8(31):50342-50358. DOI: 10.18632/oncotarget.17960.
doi: 10.18632/oncotarget.v8i31 |
[24] |
Polizzotto MN, Uldrick TS, Wyvill KM, et al. Pomalidomide for symptomatic Kaposi's sarcoma in people with and without HIV infection: a phase Ⅰ/Ⅱ study[J]. J Clin Oncol, 2016,34(34):4125-4131. DOI: 10.1200/JCO.2016.69.3812.
doi: 10.1200/JCO.2016.69.3812 |
[25] |
Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): a versatile receptor for immune-based therapy[J]. Semin Immunol, 2019,42:101298. DOI: 10.1016/j.smim.2019.101298.
doi: 10.1016/j.smim.2019.101298 |
[26] |
Dupin N. Update on oncogenesis and therapy for Kaposi sarcoma[J]. Curr Opin Oncol, 2020,32(2):122-128. DOI: 10.1097/CCO.0000000000000601.
doi: 10.1097/CCO.0000000000000601 |
[27] | Host KM, Jacobs SR, West JA, et al. Kaposi's sarcoma-associated herpesvirus increases PD-L1 and proinflammatory cytokine expression in human monocytes[J]. mBio, 2017,8(5):e00917. DOI: 10.1128/mBio.00917-17. |
[28] |
Galanina N, Goodman AM, Cohen PR, et al. Successful treatment of HIV-associated Kaposi sarcoma with immune checkpoint blockade[J]. Cancer Immunol Res, 2018,6(10):1129-1135. DOI: 10.1158/2326-6066.CIR-18-0121.
doi: 10.1158/2326-6066.CIR-18-0121 pmid: 30194084 |
[29] |
Fujiwara Y, Sun Y, Torphy RJ, et al. Pomalidomide inhibits PD-L1 induction to promote antitumor immunity[J]. Cancer Res, 2018,78(23):6655-6665. DOI: 10.1158/0008-5472.CAN-18-1781.
doi: 10.1158/0008-5472.CAN-18-1781 |
[30] |
Uldrick TS, Goncalves PH, Abdul-Hay M, et al. Assessment of the safety of pembrolizumab in patients with HIV and advanced cancer—a phase 1 study[J]. JAMA Oncol, 2019,5(9):1332-1339. DOI: 10.1001/jamaoncol.2019.2244.
doi: 10.1001/jamaoncol.2019.2244 |
[31] |
Barasa AK, Ye P, Phelps M, et al. BALB/c mice immunized with a combination of virus-like particles incorporating Kaposi sarcoma-associated herpesvirus (KSHV) envelope glycoproteins gpK8.1, gB, and gH/gL induced comparable serum neutralizing antibody activity to UV-inactivated KSHV[J]. Oncotarget, 2017,8(21):34481-34497. DOI: 10.18632/oncotarget.15605.
doi: 10.18632/oncotarget.15605 pmid: 28404899 |
[32] |
Mulama DH, Mutsvunguma LZ, Totonchy J, et al. A multivalent Kaposi sarcoma-associated herpesvirus-like particle vaccine capable of eliciting high titers of neutralizing antibodies in immunized rabbits[J]. Vaccine, 2019,37(30):4184-4194. DOI: 10.1016/j.vaccine.2019.04.071.
doi: S0264-410X(19)30559-6 pmid: 31201053 |
[1] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[2] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[3] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[4] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[5] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[6] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[7] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[8] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[9] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[10] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[11] | Cui Tenglu, Lyu lu, Sun Pengfei. Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 548-552. |
[12] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. |
[13] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[14] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[15] | Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma [J]. Journal of International Oncology, 2023, 50(5): 299-303. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||