
Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (5): 302-306.doi: 10.3760/cma.j.cn371439-20220221-00056
• Reviews • Previous Articles Next Articles
Received:2022-02-21
															
							
																	Revised:2022-03-31
															
							
															
							
																	Online:2022-05-08
															
							
																	Published:2022-05-31
															
						Contact:
								Yang Yu   
																	E-mail:yangyu13836125585@163.com
																					Sun Xiaoke, Yang Yu. Correlations between genomic and transcriptome characteristics and immune in hepatocellular carcinoma[J]. Journal of International Oncology, 2022, 49(5): 302-306.
"
| 基因 | 基因组改变 | 占比 | 生物学途径 | 
|---|---|---|---|
| TERT[ |  启动子突变 | 50%~60% | 端粒维持 | 
| TERT[ |  扩增 | 6% | 端粒维持 | 
| TERT[ |  易位 | 3% | 端粒维持 | 
| TP53[ |  失活突变 | 15%~40% | 细胞周期控制 | 
| CDKN2A[ |  失活突变 | 2%~9% | 细胞周期控制 | 
| CCND1[ |  扩增 | 7% | 细胞周期控制 | 
| CTNNB1[ |  激活突变 | 10%~35% | Wnt/β-连环蛋白途径 | 
| AXIN1[ |  失活突变 | 5%~15% | Wnt/β-连环蛋白途径 | 
| FGF19[ |  扩增 | 5%~10% | PI3K/AKT-mTOR途径 | 
| RPS6KA3[ |  失活突变 | 2%~9% | PI3K/AKT-mTOR途径 | 
| VEGFA[ |  扩增 | 4% | PI3K/AKT-mTOR途径 | 
| ARID1A[ |  失活突变 | 5%~17% | 染色质重塑 | 
| ARID2[ |  失活突变 | 3%~18% | 染色质重塑 | 
| NFE2L2[ |  激活突变 | 3%~6% | 氧化应激途径 | 
| KEAP1[ |  失活突变 | 2%~8% | 氧化应激途径 | 
| [1] |  
											 Cheu JW, Wong CC. Mechanistic rationales guiding combination hepatocellular carcinoma therapies involving immune checkpoint inhibitors[J]. Hepatology, 2021, 74(4): 2264-2276. DOI: 10.1002/hep.31840. 
																							 doi: 10.1002/hep.31840  | 
										
| [2] |  
											 O'Rourke JM, Sagar VM, Shah T, et al. Carcinogenesis on the background of liver fibrosis: implications for the management of hepatocellular cancer[J]. World J Gastroenterol, 2018, 24(39): 4436-4447. DOI: 10.3748/wjg.v24.i39.4436. 
																							 doi: 10.3748/wjg.v24.i39.4436  | 
										
| [3] |  
											 He Y, Lu M, Che J, et al. Biomarkers and future perspectives for hepatocellular carcinoma immunotherapy[J]. Front Oncol, 2021, 11: 716844. DOI: 10.3389/fonc.2021.716844. 
																							 doi: 10.3389/fonc.2021.716844  | 
										
| [4] |  
											 El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502. DOI: 10.1016/S0140-6736(17)31046-2. 
																							 doi: S0140-6736(17)31046-2 pmid: 28434648  | 
										
| [5] |  
											 Brunner SF, Roberts ND, Wylie LA, et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver[J]. Nature, 2019, 574(7779): 538-542. DOI: 10.1038/s41586-019-1670-9. 
																							 doi: 10.1038/s41586-019-1670-9  | 
										
| [6] |  
											 Müller M, Bird TG, Nault JC. The landscape of gene mutations in cirrhosis and hepatocellular carcinoma[J]. J Hepatol, 2020, 72(5): 990-1002. DOI: 10.1016/j.jhep.2020.01.019. 
																							 doi: 10.1016/j.jhep.2020.01.019  | 
										
| [7] |  
											 Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2016, 2: 16018. DOI: 10.1038/nrdp.2016.18. 
																							 doi: 10.1038/nrdp.2016.18 pmid: 27158749  | 
										
| [8] |  
											 Torrecilla S, Sia D, Harrington AN, et al. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma[J]. J Hepatol, 2017, 67(6): 1222-1231. DOI: 10.1016/j.jhep.2017.08.013. 
																							 doi: S0168-8278(17)32252-3 pmid: 28843658  | 
										
| [9] |  
											 Zhu M, Lu T, Jia Y, et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease[J]. Cell, 2019, 177(3): 608-621.e12. DOI: 10.1016/j.cell.2019.03.026. 
																							 doi: 10.1016/j.cell.2019.03.026  | 
										
| [10] |  
											 Harding JJ, Nandakumar S, Armenia J, et al. Prospective genoty-ping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies[J]. Clin Cancer Res, 2019, 25(7): 2116-2126. DOI: 10.1158/1078-0432.CCR-18-2293. 
																							 doi: 10.1158/1078-0432.CCR-18-2293 pmid: 30373752  | 
										
| [11] |  
											 Letouzé E, Shinde J, Renault V, et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis[J]. Nat Commun, 2017, 8(1): 1315. DOI: 10.1038/s41467-017-01358-x. 
																							 doi: 10.1038/s41467-017-01358-x pmid: 29101368  | 
										
| [12] |  
											 Nault JC, Martin Y, Caruso S, et al. Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 164-182. DOI: 10.1002/hep.30811. 
																							 doi: 10.1002/hep.30811  | 
										
| [13] |  
											 Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[J]. Nat Genet, 2015, 47(5): 505-511. DOI: 10.1038/ng.3252. 
																							 doi: 10.1038/ng.3252  | 
										
| [14] |  
											 Totoki Y, Tatsuno K, Covington KR, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes[J]. Nat Genet, 2014, 46(12): 1267-1273. DOI: 10.1038/ng.3126. 
																							 doi: 10.1038/ng.3126  | 
										
| [15] |  
											 Di Agostino S. The impact of mutant p53 in the non-coding RNA world[J]. Biomolecules, 2020, 10(3): 472. DOI: 10.3390/biom 10030472. 
																							 doi: 10.3390/biom 10030472  | 
										
| [16] |  
											 Takai A, Dang HT, Wang XW. Identification of drivers from cancer genome diversity in hepatocellular carcinoma[J]. Int J Mol Sci, 2014, 15(6): 11142-11160. DOI: 10.3390/ijms150611142. 
																							 doi: 10.3390/ijms150611142  | 
										
| [17] |  
											 Krutsenko Y, Singhi AD, Monga SP. β-catenin activation in hepatocellular cancer: implications in biology and therapy[J]. Cancers (Basel), 2021, 13(8): 1830. DOI: 10.3390/cancers13081830. 
																							 doi: 10.3390/cancers13081830  | 
										
| [18] |  
											 Li J, Quan H, Liu Q, et al. Alterations of axis inhibition protein 1 (AXIN1) in hepatitis B virus-related hepatocellular carcinoma and overexpression of AXIN1 induces apoptosis in hepatocellular cancer cells[J]. Oncol Res, 2013, 20(7): 281-288. DOI: 10.3727/096504013x13639794277608. 
																							 doi: 10.3727/096504013x13639794277608  | 
										
| [19] |  
											 Kurebayashi Y, Ojima H, Tsujikawa H, et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification[J]. Hepatology, 2018, 68(3): 1025-1041. DOI: 10.1002/hep.29904. 
																							 doi: 10.1002/hep.29904 pmid: 29603348  | 
										
| [20] |  
											 Ovais M, Guo M, Chen C. Tailoring nanomaterials for targeting tumor-associated macrophages[J]. Adv Mater, 2019, 31(19): e1808303. DOI: 10.1002/adma.201808303. 
																							 doi: 10.1002/adma.201808303  | 
										
| [21] |  
											 Pose E, Coll M, Martínez-Sánchez C, et al. Programmed death ligand 1 is overexpressed in liver macrophages in chronic liver diseases, and its blockade improves the antibacterial activity against infections[J]. Hepatology, 2021, 74(1): 296-311. DOI: 10.1002/hep.31644. 
																							 doi: 10.1002/hep.31644  | 
										
| [22] |  
											 Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils[J]. Annu Rev Pathol, 2014, 9: 181-218. DOI: 10.1146/annurev-pathol-020712-164023. 
																							 doi: 10.1146/annurev-pathol-020712-164023 pmid: 24050624  | 
										
| [23] |  
											 Nishida N, Kudo M. Oncogenic signal and tumor microenvironment in hepatocellular carcinoma[J]. Oncology, 2017, 93(Suppl-1): 160-164. DOI: 10.1159/000481246. 
																							 doi: 10.1159/000481246  | 
										
| [24] |  
											 Ringelhan M, Pfister D, O’Connor T, et al. The immunology of hepatocellular carcinoma[J]. Nat Immunol, 2018, 19(3): 222-232. DOI: 10.1038/s41590-018-0044-z. 
																							 doi: 10.1038/s41590-018-0044-z pmid: 29379119  | 
										
| [25] |  
											 Huang Y, Wang FM, Wang T, et al. Tumor-infiltrating FoxP3+ tregs and CD8+ T cells affect the prognosis of hepatocellular carcinoma patients[J]. Digestion, 2012, 86(4): 329-337. DOI: 10.1159/000342801. 
																							 doi: 10.1159/000342801 pmid: 23207161  | 
										
| [26] |  
											 McGovern BH, Golan Y, Lopez M, et al. The impact of cirrhosis on CD4+ T cell counts in HIV-seronegative patients[J]. Clin Infect Dis, 2007, 44(3): 431-437. DOI: 10.1086/509580. 
																							 doi: 10.1086/509580 pmid: 17205454  | 
										
| [27] |  
											 Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing[J]. Cell, 2017, 169(7): 1342-1356.e16. DOI: 10.1016/j.cell.2017.05.035. 
																							 doi: 10.1016/j.cell.2017.05.035  | 
										
| [28] |  
											 Wang JC, Livingstone AM. Cutting edge: CD4+T cell help can be essential for primary CD8+T cell responses in vivo[J]. J Immunol, 2003, 171(12): 6339-6343. DOI: 10.4049/jimmunol.171.12.6339. 
																							 doi: 10.4049/jimmunol.171.12.6339  | 
										
| [29] |  
											 Cai L, Zhang Z, Zhou L, et al. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients[J]. Clin Immunol, 2008, 129(3): 428-437. DOI: 10.1016/j.clim.2008.08.012. 
																							 doi: 10.1016/j.clim.2008.08.012  | 
										
| [30] |  
											 Tcyganov E, Mastio J, Chen E, et al. Plasticity of myeloid-derived suppressor cells in cancer[J]. Curr Opin Immunol, 2018, 51: 76-82. DOI: 10.1016/j.coi.2018.03.009. 
																							 doi: S0952-7915(17)30109-7 pmid: 29547768  | 
										
| [31] |  
											 Liu Z, Zhang Y, Shi C, et al. A novel immune classification reveals distinct immune escape mechanism and genomic altera-tions: implications for immunotherapy in hepatocellular carcinoma[J]. J Transl Med, 2021, 19(1): 5. DOI: 10.1186/s12967-020-02697-y. 
																							 doi: 10.1186/s12967-020-02697-y  | 
										
| [32] |  
											 Pinyol R, Sia D, Llovet JM. Immune exclusion-Wnt/CTNNB1 class predicts resistance to immunotherapies in HCC[J]. Clin Cancer Res, 2019, 25(7): 2021-2023. DOI: 10.1158/1078-0432.CCR-18-3778. 
																							 doi: 10.1158/1078-0432.CCR-18-3778 pmid: 30617138  | 
										
| [33] |  
											 Choi M, Kadara H, Zhang J, et al. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function[J]. Ann Oncol, 2017, 28(1): 83-89. DOI: 10.1093/annonc/mdw437. 
																							 doi: 10.1093/annonc/mdw437 pmid: 28177435  | 
										
| [34] |  
											 Shen J, Ju Z, Zhao W, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade[J]. Nat Med, 2018, 24(5): 556-562. DOI: 10.1038/s41591-018-0012-z. 
																							 doi: 10.1038/s41591-018-0012-z  | 
										
| [35] |  
											 Berger MF, Mardis ER. The emerging clinical relevance of geno-mics in cancer medicine[J]. Nat Rev Clin Oncol, 2018, 15(6): 353-365. DOI: 10.1038/s41571-018-0002-6. 
																							 doi: 10.1038/s41571-018-0002-6  | 
										
| [36] |  
											 Ou Q, Yu Y, Li A, et al. Association of survival and genomic mutation signature with immunotherapy in patients with hepatocellular carcinoma[J]. Ann Transl Med, 2020, 8(5): 230. DOI: 10.21037/atm.2020.01.32. 
																							 doi: 10.21037/atm.2020.01.32  | 
										
| [1] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. | 
| [2] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. | 
| [3] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. | 
| [4] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. | 
| [5] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. | 
| [6] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. | 
| [7] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. | 
| [8] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. | 
| [9] | Cui Tenglu, Lyu lu, Sun Pengfei. Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 548-552. | 
| [10] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. | 
| [11] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. | 
| [12] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. | 
| [13] | Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma [J]. Journal of International Oncology, 2023, 50(5): 299-303. | 
| [14] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. | 
| [15] | Ma Pengcheng, Chen Yu. Research progress of primary pulmonary lymphoepithelioma-like carcinoma [J]. Journal of International Oncology, 2023, 50(3): 174-178. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
