Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (5): 307-313.doi: 10.3760/cma.j.cn371439-20220303-00057
• Reviews • Previous Articles Next Articles
Received:
2022-03-03
Revised:
2022-03-20
Online:
2022-05-08
Published:
2022-05-31
Contact:
Zhou Juying
E-mail:zhoujuyingsy@163.com
Yuan Chenyang, Zhou Juying. Research progress on prognostic factors of cervical cancer[J]. Journal of International Oncology, 2022, 49(5): 307-313.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Randall TC, Goodman A, Schmeler K, et al. Cancer and the world’s poor: what’s a gynecologic cancer specialist to do?[J]. Gynecol Oncol, 2016, 142(1): 6-8. DOI: 10.1016/j.ygyno.2016.05.018.
doi: S0090-8258(16)30742-9 pmid: 27210817 |
[3] |
Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis[J]. Lancet Glob Health, 2020, 8(2): e191-e203. DOI: 10.1016/S2214-109X(19)30482-6.
doi: 10.1016/S2214-109X(19)30482-6 pmid: 31812369 |
[4] |
Lowy DR, Schiller JT. Reducing HPV-associated cancer globally[J]. Cancer Prev Res (Phila), 2012, 5(1): 18-23. DOI: 10.1158/1940-6207.CAPR-11-0542.
doi: 10.1158/1940-6207.CAPR-11-0542 |
[5] |
Bernard HU, Burk RD, Chen Z, et al. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments[J]. Virology, 2010, 401(1): 70-79. DOI: 10.1016/j.virol.2010.02.002.
doi: 10.1016/j.virol.2010.02.002 |
[6] |
Roden RB, Lowy DR, Schiller JT. Papillomavirus is resistant to de-siccation[J]. J Infect Dis, 1997, 176(4): 1076-1079. DOI: 10.1086/516515.
doi: 10.1086/516515 pmid: 9333171 |
[7] |
Muñoz N, Bosch FX, Castellsagué X, et al. Against which human papillomavirus types shall we vaccinate and screen? The international perspective[J]. Int J Cancer, 2004, 111(2): 278-285. DOI: 10.1002/ijc.20244.
doi: 10.1002/ijc.20244 |
[8] |
Long W, Yang Z, Li X, et al. HPV-16, HPV-58, and HPV-33 are the most carcinogenic HPV genotypes in Southwestern China and their viral loads are associated with severity of premalignant lesions in the cervix[J]. Virol J, 2018, 15(1): 94. DOI: 10.1186/s12985-018-1003-x.
doi: 10.1186/s12985-018-1003-x |
[9] |
Nagai Y, Toma T, Moromizato H, et al. Persistence of human papillomavirus infection as a predictor for recurrence in carcinoma of the cervix after radiotherapy[J]. Am J Obstet Gynecol, 2004, 191(6): 1907-1913. DOI: 10.1016/j.ajog.2004.06.088.
doi: 10.1016/j.ajog.2004.06.088 |
[10] |
Yang Z, Hou Y, Lyu J, et al. Dynamic prediction and prognostic analysis of patients with cervical cancer: a landmarking analysis approach[J]. Ann Epidemiol, 2020, 44: 45-51. DOI: 10.1016/j.annepidem.2020.01.009.
doi: 10.1016/j.annepidem.2020.01.009 |
[11] |
Wright JD, Matsuo K, Huang Y, et al. Prognostic performance of the 2018 international federation of gynecology and obstetrics cervical cancer staging guidelines[J]. Obstet Gynecol, 2019, 134(1): 49-57. DOI: 10.1097/AOG.0000000000003311.
doi: 10.1097/AOG.0000000000003311 pmid: 31188324 |
[12] |
Frumovitz M, Sun CC, Schmeler KM, et al. Parametrial involvement in radical hysterectomy specimens for women with early-stage cervical cancer[J]. Obstet Gynecol, 2009, 114(1): 93-99. DOI: 10.1097/AOG.0b013e3181ab474d.
doi: 10.1097/AOG.0b013e3181ab474d pmid: 19546764 |
[13] |
Yüksel D, Karataş Şahin E, Ünsal M, et al. The prognostic factors in 384 patients with FIGO 2014 stage ⅠB cervical cancer: what is the role of tumor size on prognosis?[J]. Eur J Obstet Gynecol Reprod Biol, 2021, 266: 126-132. DOI: 10.1016/j.ejogrb.2021.09.028.
doi: 10.1016/j.ejogrb.2021.09.028 pmid: 34634671 |
[14] |
Mayr NA, Yuh WT, Zheng J, et al. Tumor size evaluated by pelvic examination compared with 3-D MR quantitative analysis in the prediction of outcome for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 1997, 39(2): 395-404. DOI: 10.1016/S0360-3016(97)00318-0.
doi: 10.1016/S0360-3016(97)00318-0 |
[15] |
Takekuma M, Kasamatsu Y, Kado N, et al. The issues regarding postoperative adjuvant therapy and prognostic risk factors for patients with stage Ⅰ-Ⅱ cervical cancer: a review[J]. J Obstet Gynaecol Res, 2017, 43(4): 617-626. DOI: 10.1111/jog.13282.
doi: 10.1111/jog.13282 |
[16] |
Olthof EP, van der Aa MA, Adam JA, et al. The role of lymph nodes in cervical cancer: incidence and identification of lymph node metastases-a literature review[J]. Int J Clin Oncol, 2021, 26(9): 1600-1610. DOI: 10.1007/s10147-021-01980-2.
doi: 10.1007/s10147-021-01980-2 pmid: 34241726 |
[17] |
Wang M, Yuan B, Zhou ZH, et al. Clinicopathological characteristics and prognostic factors of cervical adenocarcinoma[J]. Sci Rep, 2021, 11(1): 7506. DOI: 10.1038/s41598-021-86786-y.
doi: 10.1038/s41598-021-86786-y pmid: 33820927 |
[18] |
Uno T, Ito H, Isobe K, et al. Postoperative pelvic radiotherapy for cervical cancer patients with positive parametrial invasion[J]. Gynecol Oncol, 2005, 96(2): 335-340. DOI: 10.1016/j.ygyno.2004.09.061.
doi: 10.1016/j.ygyno.2004.09.061 |
[19] |
McComas KN, Torgeson AM, Ager BJ, et al. The variable impact of positive lymph nodes in cervical cancer: implications of the new FIGO staging system[J]. Gynecol Oncol, 2020, 156(1): 85-92. DOI: 10.1016/j.ygyno.2019.10.025.
doi: S0090-8258(19)31609-9 pmid: 31744640 |
[20] |
Chen HH, Meng WY, Li RZ, et al. Potential prognostic factors in progression-free survival for patients with cervical cancer[J]. BMC Cancer, 2021, 21(1): 531. DOI: 10.1186/s12885-021-08243-3.
doi: 10.1186/s12885-021-08243-3 |
[21] |
Hoskins WJ. Prognostic factors for risk of recurrence in stages Ⅰb and Ⅱa cervical cancer[J]. Baillieres Clin Obstet Gynaecol, 1988, 2(4): 817-828. DOI: 10.1016/s0950-3552(98)80010-2.
doi: 10.1016/s0950-3552(98)80010-2 |
[22] |
Delgado G, Bundy B, Zaino R, et al. Prospective surgical-pathological study of disease-free interval in patients with stage ⅠB squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study[J]. Gynecol Oncol, 1990, 38(3): 352-357. DOI: 10.1016/0090-8258(90)90072-s.
doi: 10.1016/0090-8258(90)90072-s pmid: 2227547 |
[23] |
Zhu J, Cao L, Wen H, et al. The clinical and prognostic implication of deep stromal invasion in cervical cancer patients undergoing radical hysterectomy[J]. J Cancer, 2020, 11(24): 7368-7377. DOI: 10.7150/jca.50752.
doi: 10.7150/jca.50752 |
[24] |
Toprak S, Sahin EA, Sahin H, et al. Risk factors for cervical stromal involvement in endometrioid-type endometrial cancer[J]. Int J Gynaecol Obstet, 2021, 153(1): 51-55. DOI: 10.1002/ijgo.13449.
doi: 10.1002/ijgo.13449 |
[25] |
Colombo N, Creutzberg C, Amant F, et al. ESMO-ESGO-ESTRO consensus conference on endometrial cancer: diagnosis, treatment and follow-up[J]. Int J Gynecol Cancer, 2016, 26(1): 2-30. DOI: 10.1097/IGC.0000000000000609.
doi: 10.1097/IGC.0000000000000609 |
[26] |
Herr D, König J, Heilmann V, et al. Prognostic impact of satellite-lymphovascular space involvement in early-stage cervical cancer[J]. Ann Surg Oncol, 2009, 16(1): 128-132. DOI: 10.1245/s10434-008-0185-7.
doi: 10.1245/s10434-008-0185-7 |
[27] |
Pol FJ, Zusterzeel PL, van Ham MA, et al. Satellite lymphovascular space invasion: an independent risk factor in early stage cervical cancer[J]. Gynecol Oncol, 2015, 138(3): 579-584. DOI: 10.1016/j.ygyno.2015.06.035.
doi: 10.1016/j.ygyno.2015.06.035 |
[28] |
Li P, Liu P, Yang Y, et al. Hazard ratio analysis of laparoscopic radical hysterectomy for ⅠA1 with LVSI-ⅡA2 cervical cancer: identifying the possible contraindications of laparoscopic surgery for cervical cancer[J]. Front Oncol, 2020, 10: 1002. DOI: 10.3389/fonc.2020.01002.
doi: 10.3389/fonc.2020.01002 |
[29] |
陈春林, 康山, 陈必良, 等. 不同肿瘤直径的Ⅰa1(LVSI阳性)- Ⅰb1期子宫颈癌腹腔镜与开腹手术的肿瘤学结局比较[J]. 中华妇产科杂志, 2020, 55(9): 589-599. DOI: 10.3760/cma.j.cn112141-20200515-00411.
doi: 10.3760/cma.j.cn112141-20200515-00411 |
[30] |
Weyl A, Illac C, Lusque A, et al. Prognostic value of lymphovascular space invasion in early-stage cervical cancer[J]. Int J Gynecol Cancer, 2020, 30(10): 1493-1499. DOI: 10.1136/ijgc-2020-001274.
doi: 10.1136/ijgc-2020-001274 |
[31] |
Bartel DP. Metazoan MicroRNAs[J]. Cell, 2018, 173(1): 20-51. DOI: 10.1016/j.cell.2018.03.006.
doi: S0092-8674(18)30286-1 pmid: 29570994 |
[32] |
Mencía A, Modamio-Høybjør S, Redshaw N, et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss[J]. Nat Genet, 2009, 41(5): 609-613. DOI: 10.1038/ng.355.
doi: 10.1038/ng.355 |
[33] |
Keller T, Boeckel JN, Groß S, et al. Improved risk stratification in prevention by use of a panel of selected circulating microRNAs[J]. Sci Rep, 2017, 7(1): 4511. DOI: 10.1038/s41598-017-04040-w.
doi: 10.1038/s41598-017-04040-w pmid: 28674420 |
[34] |
Hosseinian S, Arefian E, Rakhsh-Khorshid H, et al. A meta-analysis of gene expression data highlights synaptic dysfunction in the hippocampus of brains with Alzheimer’s disease[J]. Sci Rep, 2020, 10(1): 8384. DOI: 10.1038/s41598-020-64452-z.
doi: 10.1038/s41598-020-64452-z pmid: 32433480 |
[35] |
Grenda A, Filip AA, Wąsik-Szczepanek E. Inside the chronic lymphocytic leukemia cell: miRNA and chromosomal aberrations[J]. Mol Med Rep, 2022, 25(2): 65. DOI: 10.3892/mmr.2022.12581.
doi: 10.3892/mmr.2022.12581 |
[36] |
McGuire A, Brown JA, Kerin MJ. Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring[J]. Cancer Metastasis Rev, 2015, 34(1): 145-155. DOI: 10.1007/s10555-015-9551-7.
doi: 10.1007/s10555-015-9551-7 |
[37] |
Eyking A, Reis H, Frank M, et al. MiR-205 and miR-373 are associated with aggressive human mucinous colorectal cancer[J]. PLoS One, 2016, 11(6): e0156871. DOI: 10.1371/journal.pone.0156871.
doi: 10.1371/journal.pone.0156871 |
[38] |
Tang T, Wong HK, Gu W, et al. MicroRNA-182 plays an onco-miRNA role in cervical cancer[J]. Gynecol Oncol, 2013, 129(1): 199-208. DOI: 10.1016/j.ygyno.2012.12.043.
doi: 10.1016/j.ygyno.2012.12.043 pmid: 23313739 |
[39] |
Zhao S, Yao D, Chen J, et al. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer[J]. Genet Test Mol Biomarkers, 2013, 17(8): 631-636. DOI: 10.1089/gtmb.2013.0085.
doi: 10.1089/gtmb.2013.0085 |
[40] |
Chen J, Li G. MiR-1284 enhances sensitivity of cervical cancer cells to cisplatin via downregulating HMGB1[J]. Biomed Pharmacother, 2018, 107: 997-1003. DOI: 10.1016/j.biopha.2018.08.059.
doi: S0753-3322(18)33193-7 pmid: 30257412 |
[41] |
How C, Hui AB, Alajez NM, et al. MicroRNA-196b regulates the homeobox B7-vascular endothelial growth factor axis in cervical cancer[J]. PLoS One, 2013, 8(7): e67846. DOI: 10.1371/journal.pone.0067846.
doi: 10.1371/journal.pone.0067846 |
[42] | Li M, Li BY, Xia H, et al. Expression of microRNA-142-3p in cervical cancer and its correlation with prognosis[J]. Eur Rev Med Pharmacol Sci, 2017, 21(10): 2346-2350. |
[43] |
Vromman M, Vandesompele J, Volders PJ. Closing the circle: current state and perspectives of circular RNA databases[J]. Brief Bioinform, 2021, 22(1): 288-297. DOI: 10.1093/bib/bbz175.
doi: 10.1093/bib/bbz175 |
[44] |
Gao YL, Zhang MY, Xu B, et al. Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis[J]. Oncotarget, 2017, 8(49): 86625-86633. DOI: 10.18632/oncotarget.21257.
doi: 10.18632/oncotarget.21257 |
[45] |
Cai H, Zhang P, Xu M, et al. Circular RNA hsa_circ_0000263 participates in cervical cancer development by regulating target gene of miR-150-5p[J]. J Cell Physiol, 2019, 234(7): 11391-11400. DOI: 10.1002/jcp.27796.
doi: 10.1002/jcp.27796 |
[46] |
Wu P, Li C, Ye DM, et al. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis[J]. Aging (Albany NY), 2021, 13(3): 4663-4673. DOI: 10.18632/aging.202518.
doi: 10.18632/aging.202518 |
[47] |
Xie H, Wang J, Wang B. Circular RNA circ_0003221 promotes cervical cancer progression by regulating miR-758-3p/CPEB4 axis[J]. Cancer Manag Res, 2021, 13: 5337-5350. DOI: 10.2147/CMAR.S311242.
doi: 10.2147/CMAR.S311242 |
[48] |
Song TF, Xu AL, Chen XH, et al. Circular RNA circRNA_101996 promoted cervical cancer development by regulating miR-1236-3p/TRIM37 axis[J]. Kaohsiung J Med Sci, 2021, 37(7): 547-561. DOI: 10.1002/kjm2.12378.
doi: 10.1002/kjm2.12378 |
[49] |
Boeckel JN, Perret MF, Glaser SF, et al. Identification and regulation of the long non-coding RNA Heat2 in heart failure[J]. J Mol Cell Cardiol, 2019, 126: 13-22. DOI: 10.1016/j.yjmcc.2018.11.004.
doi: 10.1016/j.yjmcc.2018.11.004 |
[50] |
Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer[J]. Oncogene, 2017, 36(41): 5661-5667. DOI: 10.1038/onc.2017.184.
doi: 10.1038/onc.2017.184 pmid: 28604750 |
[51] |
Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by nonco-ding RNAs[J]. Cell, 2007, 129(7): 1311-1323. DOI: 10.1016/j.cell.2007.05.022.
doi: 10.1016/j.cell.2007.05.022 |
[52] |
Ishibashi M, Kogo R, Shibata K, et al. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma[J]. Oncol Rep, 2013, 29(3): 946-950. DOI: 10.3892/or.2012.2219.
doi: 10.3892/or.2012.2219 pmid: 23292722 |
[53] |
Li J, Wang Y, Yu J, et al. A high level of circulating HOTAIR is associated with progression and poor prognosis of cervical cancer[J]. Tumour Biol, 2015, 36(3): 1661-1665. DOI: 10.1007/s13277-014-2765-4.
doi: 10.1007/s13277-014-2765-4 |
[54] |
Kim HJ, Lee DW, Yim GW, et al. Long non-coding RNA HOTAIR is associated with human cervical cancer progression[J]. Int J Oncol, 2015, 46(2): 521-530. DOI: 10.3892/ijo.2014.2758.
doi: 10.3892/ijo.2014.2758 |
[55] |
Yang M, Zhai X, Xia B, et al. Long noncoding RNA CCHE1 promotes cervical cancer cell proliferation via upregulating PCNA[J]. Tumour Biol, 2015, 36(10): 7615-7622. DOI: 10.1007/s13277-015-3465-4.
doi: 10.1007/s13277-015-3465-4 |
[56] |
Guo F, Li Y, Liu Y, et al. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion[J]. Acta Biochim Biophys Sin (Shanghai), 2010, 42(3): 224-229. DOI: 10.1093/abbs/gmq008.
doi: 10.1093/abbs/gmq008 |
[57] |
Barkati M, Fortin I, Mileshkin L, et al. Hemoglobin level in cervical cancer: a surrogate for an infiltrative phenotype[J]. Int J Gynecol Cancer, 2013, 23(4): 724-729. DOI: 10.1097/IGC.0b013e31828a0623.
doi: 10.1097/IGC.0b013e31828a0623 pmid: 23446376 |
[58] |
Mayr NA, Wang JZ, Zhang D, et al. Synergistic effects of hemoglobin and tumor perfusion on tumor control and survival in cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2009, 74(5): 1513-1521. DOI: 10.1016/j.ijrobp.2008.09.050.
doi: 10.1016/j.ijrobp.2008.09.050 |
[59] |
Zhang X, Lv Z, Yu H, et al. The clinicopathological and prognostic role of thrombocytosis in patients with cancer: a meta-analysis[J]. Oncol Lett, 2017, 13(6): 5002-5008. DOI: 10.3892/ol.2017.6054.
doi: 10.3892/ol.2017.6054 |
[60] |
Wang JM, Wang Y, Huang YQ, et al. Prognostic values of platelet-associated indicators in resectable cervical cancer[J]. Dose Response, 2019, 17(3): 1559325819874199. DOI: 10.1177/1559325819874199.
doi: 10.1177/1559325819874199 |
[61] |
Domenici L, Tonacci A, Aretini P, et al. Inflammatory biomarkers as promising predictors of prognosis in cervical cancer patients[J]. Oncology, 2021, 99(9): 571-579. DOI: 10.1159/000517320.
doi: 10.1159/000517320 |
[62] |
Ma JY, Ke LC, Liu Q. The pretreatment platelet-to-lymphocyte ratio predicts clinical outcomes in patients with cervical cancer: a meta-analysis[J]. Medicine (Baltimore), 2018, 97(43): e12897. DOI: 10.1097/MD.0000000000012897.
doi: 10.1097/MD.0000000000012897 |
[63] |
Wu Y, Ye S, Goswami S, et al. Clinical significance of peripheral blood and tumor tissue lymphocyte subsets in cervical cancer patients[J]. BMC Cancer, 2020, 20(1): 173. DOI: 10.1186/s12885-020-6633-x.
doi: 10.1186/s12885-020-6633-x |
[64] |
Wu J, Chen M, Liang C, et al. Prognostic value of the pretreatment neutrophil-to-lymphocyte ratio in cervical cancer: a meta-analysis and systematic review[J]. Oncotarget, 2017, 8(8): 13400-13412. DOI: 10.18632/oncotarget.14541.
doi: 10.18632/oncotarget.14541 |
[65] |
Huang QT, Man QQ, Hu J, et al. Prognostic significance of neutrophil-to-lymphocyte ratio in cervical cancer: a systematic review and meta-analysis of observational studies[J]. Oncotarget, 2017, 8(10): 16755-16764. DOI: 10.18632/oncotarget.15157.
doi: 10.18632/oncotarget.15157 |
[66] |
Li YX, Chang JY, He MY, et al. Neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) predict clinical outcome in patients with stage ⅡB cervical cancer[J]. J Oncol, 2021, 2021: 2939162. DOI: 10.1155/2021/2939162.
doi: 10.1155/2021/2939162 |
[67] |
Li J, Cao G, Ma Q, et al. The bidirectional interation between pancreatic cancer and diabetes[J]. World J Surg Oncol, 2012, 10: 171. DOI: 10.1186/1477-7819-10-171.
doi: 10.1186/1477-7819-10-171 |
[68] |
Chang SC, Yang WV. Hyperglycemia, tumorigenesis, and chronic inflammation[J]. Crit Rev Oncol Hematol, 2016, 108: 146-153. DOI: 10.1016/j.critrevonc.2016.11.003.
doi: 10.1016/j.critrevonc.2016.11.003 |
[69] |
Yang X, Ko GT, So WY, et al. Associations of hyperglycemia and insulin usage with the risk of cancer in type 2 diabetes: the Hong Kong diabetes registry[J]. Diabetes, 2010, 59(5): 1254-1260. DOI: 10.2337/db09-1371.
doi: 10.2337/db09-1371 |
[70] |
Yuan S, Kar S, Carter P, et al. Is type 2 diabetes causally associated with cancer risk? Evidence from a two-sample Mendelian randomization study[J]. Diabetes, 2020, 69(7): 1588-1596. DOI: 10.2337/db20-0084.
doi: 10.2337/db20-0084 |
[71] |
Chen S, Tao M, Zhao L, et al. The association between diabetes/hyperglycemia and the prognosis of cervical cancer patients: a systematic review and meta-analysis[J]. Medicine (Baltimore), 2017, 96(40): e7981. DOI: 10.1097/MD.0000000000007981.
doi: 10.1097/MD.0000000000007981 |
[72] |
Vrachnis N, Iavazzo C, Iliodromiti Z, et al. Diabetes mellitus and gynecologic cancer: molecular mechanisms, epidemiological, clinical and prognostic perspectives[J]. Arch Gynecol Obstet, 2016, 293(2): 239-246. DOI: 10.1007/s00404-015-3858-z.
doi: 10.1007/s00404-015-3858-z |
[73] |
Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality[J]. Physiol Rev, 2015, 95(3): 727-748. DOI: 10.1152/physrev.00030.2014.
doi: 10.1152/physrev.00030.2014 pmid: 26084689 |
[74] |
Calle EE, Rodriguez C, Walker-Thurmond K, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults[J]. N Engl J Med, 2003, 348(17): 1625-1638. DOI: 10.1056/NEJMoa021423.
doi: 10.1056/NEJMoa021423 |
[75] |
Frumovitz M, Jhingran A, Soliman PT, et al. Morbid obesity as an Independent risk factor for disease-specific mortality in women with cervical cancer[J]. Obstet Gynecol, 2014, 124(6): 1098-1104. DOI: 10.1097/AOG.0000000000000558.
doi: 10.1097/AOG.0000000000000558 pmid: 25415160 |
[76] |
Gnade CM, Hill EK, Botkin HE, et al. Effect of obesity on cervical cancer screening and outcomes[J]. J Low Genit Tract Dis, 2020, 24(4): 358-362. DOI: 10.1097/LGT.0000000000000570.
doi: 10.1097/LGT.0000000000000570 |
[77] |
Maruthur NM, Bolen SD, Brancati FL, et al. The association of obesity and cervical cancer screening: a systematic review and meta-analysis[J]. Obesity (Silver Spring), 2009, 17(2): 375-381. DOI: 10.1038/oby.2008.480.
doi: 10.1038/oby.2008.480 |
[78] |
Bohn JA, Hernandez-Zepeda ML, Hersh AR, et al. Does obesity influence the preferred treatment approach for early-stage cervical cancer? A cost-effectiveness analysis[J]. Int J Gynecol Cancer, 2022, 32(2): 133-140. DOI: 10.1136/ijgc-2021-003004.
doi: 10.1136/ijgc-2021-003004 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[4] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[5] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[6] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[7] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[8] | Yao Yixin, Shen Yulin. Predictive value of serum SOCS3 and TXNIP levels for the prognosis of patients with hepatocellular carcinoma treated with TACE [J]. Journal of International Oncology, 2024, 51(4): 217-222. |
[9] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[10] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[11] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[12] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[13] | Jin Xudong, Chen Zhongjian, Mao Weimin. Research progress on the role of MTAP in malignant mesothelioma [J]. Journal of International Oncology, 2024, 51(2): 99-104. |
[14] | Huang Zhen, Chen Yongshun. Research progress of circulating tumor DNA in the diagnosis and treatment of hepatocellular carcinoma [J]. Journal of International Oncology, 2024, 51(1): 59-64. |
[15] | Wang Xiao, Li Ying, Luo Yujie, Jin Shu. Study on the prognostic value of serological indicators for nasopharyngeal carcinoma based on nomogram model [J]. Journal of International Oncology, 2023, 50(8): 463-469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||