Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (9): 553-556.doi: 10.3760/cma.j.cn371439-20210517-00107
• Reviews • Previous Articles Next Articles
Fu Weida1, Chen Mengjiao2, Guo Guilong1, Zheng Shurong1()
Received:
2021-05-17
Revised:
2021-07-28
Online:
2021-09-08
Published:
2021-09-22
Contact:
Zheng Shurong
E-mail:77082566@qq.com
Supported by:
Fu Weida, Chen Mengjiao, Guo Guilong, Zheng Shurong. Role of tumor microenvironment in tumor drug resistance[J]. Journal of International Oncology, 2021, 48(9): 553-556.
[1] |
Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and functions[J]. BMC Biol, 2017, 15(1):53-70. DOI: 10.1186/s12915-017-0392-4.
doi: 10.1186/s12915-017-0392-4 |
[2] |
Almatroodi SA, McDonald CF, Darby IA, et al. Characterization of M1/M2 tumour-associated macrophages (TAMs) and Th1/Th2 cytokine profiles in patients with NSCLC[J]. Cancer Microenviron, 2016, 9(1):1-11. DOI: 10.1007/s12307-015-0174-x.
doi: 10.1007/s12307-015-0174-x |
[3] |
Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2017, 66(1):157-167. DOI: 10.1136/gutjnl-2015-310514.
doi: 10.1136/gutjnl-2015-310514 |
[4] |
Deshmukh SK, Srivastava SK, Poosarla T, et al. Inflammation, immunosuppressive microenvironment and breast cancer: opportunities for cancer prevention and therapy[J]. Ann Transl Med, 2019, 7(20):593. DOI: 10.21037/atm.2019.09.68.
doi: 10.21037/atm.2019.09.68 pmid: 31807574 |
[5] |
Yin Y, Yao S, Hu Y, et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6[J]. Clin Cancer Res, 2017, 23(23):7375-7387. DOI: 10.1158/1078-0432.CCR-17-1283.
doi: 10.1158/1078-0432.CCR-17-1283 |
[6] |
Nakasone ES, Askautrud HA, Kees T, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance[J]. Cancer Cell, 2012, 21(4):488-503. DOI: 10.1016/j.ccr.2012.02.017.
doi: 10.1016/j.ccr.2012.02.017 |
[7] |
Goswami KK, Sarkar M, Ghosh S, et al. Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core: critical role of IL-10/STAT3 signaling[J]. Mol Immunol, 2016, 80:1-10. DOI: 10.1016/j.molimm.2016.10.008.
doi: S0161-5890(16)30214-0 pmid: 27776244 |
[8] |
Rajabpour A, Afgar A, Mahmoodzadeh H, et al. MiR-608 regulating the expression of ribonucleotide reductase M1 and cytidine deaminase is repressed through induced gemcitabine chemoresistance in pancreatic cancer cells[J]. Cancer Chemother Pharmacol, 2017, 80(4):765-775. DOI: 10.1007/s00280-017-3418-2.
doi: 10.1007/s00280-017-3418-2 |
[9] |
Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer[J]. Cancer Cell, 2018, 33(3):463-479. e10. DOI: 10.1016/j.ccell.2018.01.011.
doi: S1535-6108(18)30011-4 pmid: 29455927 |
[10] |
DuFort CC, DelGiorno KE, Hingorani SR, et al. Mounting pressure in the microenvironment: fluids, solids, and cells in pancreatic ductal adenocarcinoma[J]. Gastroenterology, 2016, 150(7):1545-1557. e2. DOI: 10.1053/j.gastro.2016.03.040.
doi: 10.1053/j.gastro.2016.03.040 |
[11] |
Qiao Y, Zhang C, Li A, et al. IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma[J]. Oncogene, 2018, 37(7):873-883. DOI: 10.1038/onc.2017.387.
doi: 10.1038/onc.2017.387 pmid: 29059160 |
[12] |
Zhang H, Xie C, Yue J, et al. Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esopha-geal squamous cell carcinoma[J]. Mol Carcinog, 2017, 56(3):1150-1163. DOI: 10.1002/mc.22581.
doi: 10.1002/mc.22581 |
[13] |
Ireland L, Santos A, Ahmed MS, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived Insulin-Like growth factors[J]. Cancer Res, 2016, 76(23):6851-6863. DOI: 10.1158/0008-5472.CAN-16-1201.
doi: 10.1158/0008-5472.CAN-16-1201 pmid: 27742686 |
[14] |
Zheng G, Huang R, Qiu G, et al. Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis[J]. Cell Tissue Res, 2018, 374(1):1-15. DOI: 10.1007/s00441-018-2871-5.
doi: 10.1007/s00441-018-2871-5 |
[15] |
Shi Y, Du L, Lin L, et al. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets[J]. Nat Rev Drug Discov, 2017, 16(1):35-52. DOI: 10.1038/nrd.2016.193.
doi: 10.1038/nrd.2016.193 |
[16] |
Chen CC, He BC, Chen YL, et al. HIC1 and RassF1A methylation attenuates tubulin expression and cell stiffness in cancer[J]. Int J Mol Sci, 2018, 19(10):2884. DOI: 10.3390/ijms19102884.
doi: 10.3390/ijms19102884 |
[17] | Huang TX, Guan XY, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells[J]. Am J Cancer Res, 2019, 9(9):1889-1904. |
[18] |
He W, Liang B, Wang C, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer[J]. Oncogene, 2019, 38(23):4637-4654. DOI: 10.1038/s41388-019-0747-0.
doi: 10.1038/s41388-019-0747-0 |
[19] |
Yeldag G, Rice A, Del Río Hernández A. Chemoresistance and the self-maintaining tumor microenvironment[J]. Cancers (Basel), 2018, 10(12):471. DOI: 10.3390/cancers10120471.
doi: 10.3390/cancers10120471 |
[20] |
Zheng HC. The molecular mechanisms of chemoresistance in cancers[J]. Oncotarget, 2017, 8(35):59950-59964. DOI: 10.18632/oncotarget.19048.
doi: 10.18632/oncotarget.19048 |
[21] |
Januchowski R, Šwierczewska M, Sterzyńska K, et al. Increased expression of several collagen genes is associated with drug resistance in ovarian cancer cell lines[J]. J Cancer, 2016, 7(10):1295-1310. DOI: 10.7150/jca.15371.
doi: 10.7150/jca.15371 pmid: 27390605 |
[22] |
Wu YH, Huang YF, Chen CC, et al. Akt inhibitor SC66 promotes cell sensitivity to cisplatin in chemoresistant ovarian cancer cells through inhibition of COL11A1 expression[J]. Cell Death Dis, 2019, 10(4):322. DOI: 10.1038/s41419-019-1555-8.
doi: 10.1038/s41419-019-1555-8 |
[23] |
Stowers RS, Allen SC, Sanchez K, et al. Extracellular matrix stiffening induces a malignant phenotypic transition in breast epithelial cells[J]. Cell Mol Bioeng, 2016, 10(1):114-123. DOI: 10.1007/s12195-016-0468-1.
doi: 10.1007/s12195-016-0468-1 |
[24] |
Weniger M, Honselmann KC, Liss AS. The extracellular matrix and pancreatic cancer: a complex relationship[J]. Cancers (Basel), 2018, 10(9):316. DOI: 10.3390/cancers10090316.
doi: 10.3390/cancers10090316 |
[25] |
Senthebane DA, Rowe A, Thomford NE, et al. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer[J]. Int J Mol Sci, 2017, 18(7):1586. DOI: 10.3390/ijms18071586.
doi: 10.3390/ijms18071586 |
[26] |
Govaere O, Wouters J, Petz M, et al. Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche[J]. J Hepatol, 2016, 64(3):609-617. DOI: 10.1016/j.jhep.2015.11.011.
doi: 10.1016/j.jhep.2015.11.011 |
[27] |
Fukazawa S, Shinto E, Tsuda H, et al. Laminin β3 expression as a prognostic factor and a predictive marker of chemoresistance in colo-rectal cancer[J]. Jpn J Clin Oncol, 2015, 45(6):533-540. DOI: 10.1093/jjco/hyv037.
doi: 10.1093/jjco/hyv037 pmid: 25770060 |
[28] |
Mohammed MEA, Elhassan NM. Cytoskeletal and extracellular matrix proteins as markers for metastatic triple negative breast cancer[J]. J Int Med Res, 2019, 47(11):5767-5776. DOI: 10.1177/0300060519877079.
doi: 10.1177/0300060519877079 pmid: 31601144 |
[29] |
Liang C, Shi S, Meng Q, et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going[J]. Exp Mol Med, 2017, 49(12):e406. DOI: 10.1038/emm.2017.255.
doi: 10.1038/emm.2017.255 |
[30] |
肖俊娟, 李岩, 梁婧. 乏氧微环境与肿瘤免疫应答[J]. 国际肿瘤学杂志, 2017, 44(1):31-33. DOI: 10.3760/cma.j.issn.1673-422X.2017.01.008.
doi: 10.3760/cma.j.issn.1673-422X.2017.01.008 |
[31] |
Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of cancer progression[J]. Trends Cancer, 2016, 2(12):758-770. DOI: 10.1016/j.trecan.2016.10.016.
doi: S2405-8033(16)30159-5 pmid: 28741521 |
[32] |
Beklen H, Gulfidan G, Arga KY, et al. Drug repositioning for P-glycoprotein mediated co-expression networks in colorectal cancer[J]. Front Oncol, 2020, 10:1273. DOI: 10.3389/fonc.2020.01273.
doi: 10.3389/fonc.2020.01273 pmid: 32903699 |
[33] |
Manoochehri Khoshinani H, Afshar S, Najafi R. Hypoxia: a double-edged sword in cancer therapy[J]. Cancer Invest, 2016, 34(10):536-545. DOI: 10.1080/07357907.2016.1245317.
doi: 10.1080/07357907.2016.1245317 pmid: 27824512 |
[34] |
Yeo CD, Kang N, Choi SY, et al. The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation[J]. Korean J Intern Med, 2017, 32(4):589-599. DOI: 10.3904/kjim.2016.302.
doi: 10.3904/kjim.2016.302 |
[35] |
Tao J, Yang G, Zhou W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer[J]. J Hematol Oncol, 2021, 14(1):14. DOI: 10.1186/s13045-020-01030-w.
doi: 10.1186/s13045-020-01030-w |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[4] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[5] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[6] | An Rong, Liu Meihua, Wang Peichen, Wang Xiaohui. Research progress of Nrf2 in ovarian cancer [J]. Journal of International Oncology, 2023, 50(8): 493-497. |
[7] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[8] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[9] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[10] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[11] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[12] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[13] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[14] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[15] | Liu Xiaojie, Huang Junxing. Research progress of NADPH oxidase 2 in malignant tumors [J]. Journal of International Oncology, 2023, 50(10): 618-621. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||