Journal of International Oncology ›› 2014, Vol. 41 ›› Issue (8): 611-614.doi: 10.3760/cma.j.issn.1673-422X.2014.08.017
Previous Articles Next Articles
Liu Zhaoyun
Received:
2014-03-11
Revised:
2014-04-15
Online:
2014-08-15
Published:
2014-08-14
Contact:
Liu Zhaoyun
E-mail:liuzhaoyun114@163.com
Liu Zhaoyun. Expression and therapy of Prame gene on hematologic malignancies[J]. Journal of International Oncology, 2014, 41(8): 611-614.
[1] Ikeda H, Lethé B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor[J]. Immunity,1997, 6(2): 199-208. [2] Schenk T, Stengel S, Goellner S, et al. Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies[J]. Genes Chromosomes Cancer, 2007, 46(9): 796-804. [3] Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling[J]. Cell, 2005, 122(6): 835-847. [4] Matsushita M, Ikeda H, Kizaki M, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia[J]. Br J Haematol, 2001, 112(4): 916-926. [5] ProtoSiqueira R, FigueiredoPontes LL, Panepucci RA, et al. PRAME is a membrane and cytoplasmic protein aberrantly expressed in chronic lymphocytic leukemia and mantle cell lymphoma[J]. Leuk Res, 2006, 30(11): 1333-1339. [6] Spanaki A, Perdikogianni C, Linardakis E, et al. Quantitative assessment of PRAME expression in diagnosis of childhood acute leukemia[J]. Leuk Res, 2007, 31(5): 639-642. [7] Steinbach D, Viehmann S, Zintl F, et al. PRAME gene expression in childhood acute lymphoblastic leukemia[J]. Cancer Genetics Cytogenet, 2002, 138(1): 89-91. [8] van den Ancker W, Ruben JM, Westers TM, et al. Priming of PRAME and WT1specific CD8+ T cells in healthy donors but not in AML patients in complete remission: implications for immunotherapy[J]. Oncoimmunology, 2013, 2(4): e23971. [9] Lynch RG, Graff RJ, Sirisinha S, et al. Myeloma proteins as tumorspecific transplantation antigens[J]. Proc Natl Acad Sci USA, 1972, 69(6): 1540-1544. [10] Crainie M, Belch AR, Mant MJ, et al. Overexpression of the receptor for hyaluronanmediated motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants[J]. Blood, 1999, 93(5): 1684-1696. [11] Qian J, Xie J, Hong S, et al. Dickkopf1 (DKK1) is a widely expressed and potent tumorassociated antigen in multiple myeloma[J]. Blood, 2007, 110(5): 1587-1594. [12] Abramenko IV, Belous NI, Kriachok IA, et al. Expression of PRAME gene in multiple myeloma[J]. Ter Arkh, 2004, 76(7): 77-81. [13] Qin YZ, Zhu HH, Liu YR, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes[J]. Leuk Lymphoma, 2013, 54(7): 1442-1449. [14] Staege MS, BanningEichenseer U, Weissflog G, et al. Gene expression profiles of Hodgkin′s lymphoma cell lines with different sensitivity to cytotoxic drugs[J]. Exp Hematol, 2008, 36(7): 886-896. [15] Kewitz S, Staege MS. Knockdown of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells[J]. PLoS One, 2013, 8(2): e55897. [16] Beà S, Salaverria I, Armengol L, et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution wholegenome profiling[J]. Blood, 2009, 113(13): 3059-3069. [17] Paydas S, Tanriverdi K, Yavuz S, et al. PRAME mRNA levels in cases with acute leukemia: clinical importance and future prospects[J]. Am J Hematol, 2005, 79(4): 257-261. [18] Perna SK, De Angelis B, Pagliara D, et al. Interleukin 15 provides relief to CTLs from regulatory T cellmediated inhibition: implications for adoptive T cellbased therapies for lymphoma[J]. Clin Cancer Res, 2013, 19(1): 106-117. [19] Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following nonmyeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma[J]. J Clin Oncol, 2005, 23(10): 2346\-2357. [20] Colombo MP, Piconese S. RegulatoryTcell inhibition versus depletion: the right choice in cancer immunotherapy[J]. Nat Rev Cancer, 2007, 7(11): 880-887. [21] Cerundolo V, Hermans IF, Salio M. Dendritic cells: a journey from laboratory to clinic[J]. Nat Immunol, 2004, 5(1): 7-10. [22] Li L, Giannopoulos K, Reinhardt P, et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts[J]. Int J Oncol, 2006, 28(4): 855-861. [23] Weber G, Caruana I, Rouce RH, et al. Generation of tumor antigenspecific T cell lines from pediatric patients with acute lymphoblastic leukemiaimplications for immunotherapy[J]. Clin Cancer Res, 2013, 19(18): 5079-5091. [24] Yong AS, Keyvanfar K, Eniafe R, et al. Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemiaassociated antigens: implications for the graftversusleukemia effect and peptide vaccinebased immunotherapy[J]. Leukemia, 2008, 22(9): 1721-1727. [25] Kessler JH, Khan S, Seifert U, et al. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes[J]. Nat Immunol, 2011, 12(1): 45-67. [26] Tabarkiewicz J, Giannopoulos K. Definition of a target for immunotherapy and results of the first Peptide vaccination study in chronic lymphocytic leukemia[J]. Transplant Proc, 2010, 42(8): 3293-3296. [27] Griffioen M, Kessler JH, Borghi M, et al. Detection and functional analysis of CD8+ T cells specific for PRAME: a target for Tcell therapy[J]. Clin Cancer Res, 2006, 12(10): 3130-3136. [28] Weber JS, Vogelzang NJ, Ernstoff MS, et al. A Phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostatespecific membrane antigen in patients with advanced solid tumors[J]. J Immunother, 2011, 34(7): 556-567. [29] Bullinger L, Schlenk RF, Gtz M, et al. PRAMEinduced inhibition of retinoic acid receptor signalingmediated differentiationa possible target for ATRA response in AML without t(15;17)[J]. Clin Cancer Res, 2013, 19(9): 2562-2571. |
[1] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[2] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[3] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[4] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[5] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[6] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[7] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[8] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[9] | Teng Yuan, Li Lijuan, Zhang Liansheng. Progress of MCL-1 and its inhibitors in hematologic malignancies [J]. Journal of International Oncology, 2024, 51(2): 119-122. |
[10] | Cui Tenglu, Lyu lu, Sun Pengfei. Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 548-552. |
[11] | Wang Jun, Rong Lei, Huang Jing, Meng Jingye, Guo Zhi. Diagnostic value of transbronchial lung biopsy and bronchoalveolar lavage in pulmonary complications in patients with hematological tumors [J]. Journal of International Oncology, 2023, 50(7): 419-424. |
[12] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. |
[13] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[14] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[15] | Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma [J]. Journal of International Oncology, 2023, 50(5): 299-303. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||