Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (6): 381-384.doi: 10.3760/cma.j.cn371439-20200622-00074
• Reviews • Previous Articles
Sun Ruijie1, Shan Ningning1,2()
Received:
2020-06-22
Revised:
2020-07-22
Online:
2021-06-08
Published:
2021-06-24
Contact:
Shan Ningning
E-mail:snning@126.com
Supported by:
Sun Ruijie, Shan Ningning. Immune, targeted therapy and related issues of relapsed/refractory multiple myeloma[J]. Journal of International Oncology, 2021, 48(6): 381-384.
[1] |
Schinke M, Ihorst G, Duyster J, et al. Risk of disease recurrence and survival in patients with multiple myeloma: a german study group analysis using a conditional survival approach with long-term follow-up of 815 patients[J]. Cancer, 2020,126(15):3504-3515. DOI: 10.1002/cancr.32978.
doi: 10.1002/cncr.v126.15 |
[2] |
Nakamura K, Smyth MJ, Martinet L. Cancer immunoediting and immune dysregulation in multiple myeloma[J]. Blood, 2020,136(24):2731-2740. DOI: 10.1182/blood.2020006540.
doi: 10.1182/blood.2020006540 |
[3] |
Szalat R, Munshi NC. Novel agents in multiple myeloma[J]. Cancer J, 2019,25(1):45-53. DOI: 10.1097/PPO.0000000000000355.
doi: 10.1097/PPO.0000000000000355 |
[4] |
Chim CS, Kumar SK, Orlowski RZ, et al. Correction: management of relapsed and refractory multiple myeloma: novel agents, antibodies, immunotherapies and beyond[J]. Leukemia, 2019,33(4):1058-1059. DOI: 10.1038/s41375-019-0410-3.
doi: 10.1038/s41375-019-0410-3 pmid: 30842604 |
[5] |
Morgan GJ, Gregory WM, Davies FE, et al. The role of maintenance thalidomide therapy in multiple myeloma: MRC myeloma Ⅸ results and meta-analysis[J]. Blood, 2012,119(1):7-15. DOI: 10.1182/blood-2011-06-357038.
doi: 10.1182/blood-2011-06-357038 |
[6] |
Gormley NJ, Ko CW, Deisseroth A, et al. FDA drug approval: elotuzumab in combination with lenalidomide and dexamethasone for the treatment of relapsed or refractory multiple myeloma[J]. Clin Cancer Res, 2017,23(22):6759-6763. DOI: 10.1158/1078-0432.CCR-16-2870.
doi: 10.1158/1078-0432.CCR-16-2870 pmid: 28249893 |
[7] |
Dimopoulos MA, Palumbo A, Corradini P, et al. Safety and efficacy of pomalidomide plus low-dose dexamethasone in STRATUS (MM-010): a phase 3b study in refractory multiple myeloma[J]. Blood, 2016,128(4):497-503. DOI: 10.1182/blood-2016-02-700872.
doi: 10.1182/blood-2016-02-700872 pmid: 27226434 |
[8] |
Goldschmidt H, Moreau P, Ludwig H, et al. Carfilzomib-dexamethasone versus subcutaneous or intravenous bortezomib in relapsed or refractory multiple myeloma: secondary analysis of the phase 3 ENDEAVOR study[J]. Leuk Lymphoma, 2018,59(6):1364-1374. DOI: 10.1080/10428194.2017.1376743.
doi: 10.1080/10428194.2017.1376743 |
[9] |
Moreau P, Masszi T, Grzasko N, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma[J]. N Engl J Med, 2016,374(17):1621-1634. DOI: 10.1056/1516282.
doi: 10.1056/NEJMoa1516282 |
[10] |
Allegra A, Alonci A, Gerace D, et al. New orally active proteasome inhibitors in multiple myeloma[J]. Leuk Res, 2014,38(1):1-9. DOI: 10.1016/j.leukres.2013.10.018.
doi: 10.1016/j.leukres.2013.10.018 |
[11] |
Badros A, Singh Z, Dhakal B, et al. Marizomib for central nervous system-multiple myeloma[J]. Br J Haematol, 2017,177(2):221-225. DOI: 10.1111/bjh.14498.
doi: 10.1111/bjh.2017.177.issue-2 |
[12] |
Spencer A, Harrison S, Zonder J, et al. A phase 1 clinical trial evaluating marizomib, pomalidomide and low-dose dexamethasone in relapsed and refractory multiple myeloma (NPI-0052-107): final study results[J]. Br J Haematol, 2018,180(1):41-51. DOI: 10.1111/bjh.14987.
doi: 10.1111/bjh.2018.180.issue-1 |
[13] |
Zhu H, Wang T, Xin Z, et al. An oral second-generation proteasome inhibitor oprozomib significantly inhibits lung cancer in a p53 independent manner in vitro[J]. Acta Biochim Biophys Sin (Shanghai), 2019,51(10):1034-1040. DOI: 10.1093/abbs/gmz093.
doi: 10.1093/abbs/gmz093 |
[14] |
Hurchla MA, Garcia-Gomez A, Hornick MC, et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects[J]. Leukemia, 2013,27(2):430-440. DOI: 10.1038/leu.2012.183.
doi: 10.1038/leu.2012.183 pmid: 22763387 |
[15] |
Usmani SZ, Weiss BM, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma[J]. Blood, 2016,128(1):37-44. DOI: 10.1182/blood-2016-03-705210.
doi: 10.1182/blood-2016-03-705210 pmid: 27216216 |
[16] |
Usmani SZ, Nahi H, Plesner T, et al. Daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma: final results from the phase 2 GEN501 and SIRIUS trials[J]. Lancet Haematol, 2020,7(6):e447-e455. DOI: 10.1016/S2352-3026(20)30081-8.
doi: 10.1016/S2352-3026(20)30081-8 |
[17] |
Dimopoulos MA, Lonial S, White D, et al. Elotuzumab, lenalidomide, and dexamethasone in RRMM: final overall survival results from the phase 3 randomized ELOQUENT-2 study[J]. Blood Cancer J, 2020,10(9):91. DOI: 10.1038/s41408-020-00357-4.
doi: 10.1038/s41408-020-00357-4 pmid: 32887873 |
[18] |
Zhang T, Wang S, Lin T, et al. Systematic review and meta-analysis of the efficacy and safety of novel monoclonal antibodies for treatment of relapsed/refractory multiple myeloma[J]. Oncotarget, 2017,8(20):34001-34017. DOI: 10.18632/oncotarget.16987.
doi: 10.18632/oncotarget.v8i20 |
[19] |
Jagannath S, Heffner LT Jr, Ailawadhi S, et al. Indatuximab ravtansine (bt062) monotherapy in patients with relapsed and/or refractory multiple myeloma[J]. Clin Lymphoma Myeloma Leuk, 2019,19(6):372-380. DOI: 10.1016/j.clml.2019.02.006.
doi: S2152-2650(18)31566-0 pmid: 30930134 |
[20] |
Martin T, Baz R, Benson DM, et al. A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma[J]. Blood, 2017,129(25):3294-3303. DOI: 10.1182/blood-2016-09-740787.
doi: 10.1182/blood-2016-09-740787 |
[21] |
Badros A, Hyjek E, Ma N, et al. Pembrolizumab, pomalidomide, and low-dose dexamethasone for relapsed/refractory multiple myeloma[J]. Blood, 2017,130(10):1189-1197. DOI: 10.1182/blood-2017-03-775122.
doi: 10.1182/blood-2017-03-775122 |
[22] |
Ma Y, Liu W, Zhang L, et al. Effects of histone deacetylase inhibitor panobinostat (lbh589) on bone marrow mononuclear cells of relapsed or refractory multiple myeloma patients and its mechanisms[J]. Med Sci Monit, 2017,23:5150-5157. DOI: 10.12659/msm.904232.
doi: 10.12659/MSM.904232 |
[23] |
Wahaib K, Beggs AE, Campbell H, et al. Panobinostat: a histone deacetylase inhibitor for the treatment of relapsed or refractory multiple myeloma[J]. Am J Health Syst Pharm, 2016,73(7):441-450. DOI: 10.2146/ajhp150487.
doi: 10.2146/ajhp150487 |
[24] |
Liu JD, Sun CY, Tang L, et al. Efficacy and safety of panobinostat in relapsed or/and refractory multiple myeloma: meta analyses of clinical trials and systematic review[J]. Sci Rep, 2016,6:27361. DOI: 10.1038/srep27361.
doi: 10.1038/srep27361 |
[25] | Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma[J]. Blood, 2016,128(13):1688-1700. DOI: 10.1182/blood-2016-04-711903. |
[26] |
Baumeister SH, Murad J, Werner L, et al. Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AMN/MDS and multiple myeloma[J]. Cancer Immunol Res, 2019,7(1):100-112. DOI: 10.1158/2326-6066.CIR-18-0307.
doi: 10.1158/2326-6066.CIR-18-0307 pmid: 30396908 |
[27] |
Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma[J]. J Clin Invest, 2019,129(6):2210-2221. DOI: 10.1172/JCI126397.
doi: 10.1172/JCI126397 |
[28] |
Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma[J]. Immunotherapy, 2015,7(11):1187-1199. DOI: 10.2217/imt.15.77.
doi: 10.2217/imt.15.77 |
[29] |
Kim JR, Mathew SO, Mathew PA. Blimp-1/PRDM1 regulates the transcription of human CS1 (SLAMF7) gene in NK and B cells[J]. Immunobiology, 2016,221(1):31-39. DOI: 10.1016/j.imbio.2015.08.005.
doi: 10.1016/j.imbio.2015.08.005 |
[30] |
Wong SW, Comenzo RL. CD38 monoclonal antibody therapies for multiple myeloma[J]. Clin Lymphoma Myeloma Leuk, 2015,15(11):635-645. DOI: 10.1016/j.clml.2015.07.642.
doi: 10.1016/j.clml.2015.07.642 |
[1] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[2] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[3] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[4] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[5] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[6] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[7] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[8] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[9] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[10] | Ren Lu, Xie Xiaoli, Zhang Kun, Wang Lijuan. Effects and mechanisms of dihydroartemisinin combined with carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma cells [J]. Journal of International Oncology, 2024, 51(3): 129-136. |
[11] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[12] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[13] | Cui Tenglu, Lyu lu, Sun Pengfei. Application of radiotherapy combined with immunotherapy in the treatment of head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 548-552. |
[14] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[15] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||