Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (5): 308-312.doi: 10.3760/cma.j.cn371439-20200528-00059
• Reviews • Previous Articles Next Articles
Yan Zhiying, Mao Yifeng, Zhu Yingwei(), Xu Kequn()
Received:
2020-05-28
Revised:
2020-09-15
Online:
2021-05-08
Published:
2021-06-09
Contact:
Zhu Yingwei,Xu Kequn
E-mail:ywzhu@163.com;13775001122@139.com
Yan Zhiying, Mao Yifeng, Zhu Yingwei, Xu Kequn. Role of heterogeneity of cancer-associated fibroblasts in targeted therapy of pancreatic cancer[J]. Journal of International Oncology, 2021, 48(5): 308-312.
[1] |
Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer[J]. Lancet, 2016,388(10039):73-85. DOI: 10.1016/S0140-6736(16)00141-0.
doi: 10.1016/S0140-6736(16)00141-0 pmid: 26830752 |
[2] |
Tian C, Clauser KR, Öhlund D, et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells[J]. Proc Natl Acad Sci U S A, 2019,116(39):19609-19618. DOI: 10.1073/pnas.1908626116.
doi: 10.1073/pnas.1908626116 |
[3] |
Neesse A, Bauer CA, Öhlund D, et al. Stromal biology and therapy in pancreatic cancer: ready for clinical translation?[J]. Gut, 2019,68(1):159-171. DOI: 10.1136/gutjnl-2018-316451.
doi: 10.1136/gutjnl-2018-316451 |
[4] |
Özdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2015,28(6):831-833. DOI: 10.1016/j.ccell.2015.11.002.
doi: S1535-6108(15)00423-7 pmid: 28843279 |
[5] |
Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2014,25(6):735-747. DOI: 10.1016/j.ccr.2014.04.021.
doi: 10.1016/j.ccr.2014.04.021 |
[6] |
Neuzillet C, Tijeras-Raballand A, Ragulan C, et al. Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma[J]. J Pathol, 2019,248(1):51-65. DOI: 10.1002/path.5224.
doi: 10.1002/path.2019.248.issue-1 |
[7] |
Arina A, Idel C, Hyjek EM, et al. Tumor-associated fibroblasts predominantly come from local and not circulating precursors[J]. Proc Natl Acad Sci U S A, 2016,113(27):7551-7556. DOI: 10.1073/pnas.1600363113.
doi: 10.1073/pnas.1600363113 |
[8] |
Biffi G, Oni TE, Spielman B, et al. IL1-induced JAK/STAT signaling is antagonized by TGF-β to shape CAF heterogeneity in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2019,9(2):282-301. DOI: 10.1158/2159-8290.CD-18-0710.
doi: 10.1158/2159-8290.CD-18-0710 |
[9] |
Wörmann SM, Song L, Ai J, et al. Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival[J]. Gastroenterology, 2016,151(1):180-193. DOI: 10.1053/j.gastro.2016.03.010.
doi: 10.1053/j.gastro.2016.03.010 pmid: 27003603 |
[10] |
Novo D, Heath N, Mitchell L, et al. Mutant p53s generate proinvasive niches by influencing exosome podocalyxin levels[J]. Nat Commun, 2018,9(1):5069. DOI: 10.1038/s41467-018-07339-y.
doi: 10.1038/s41467-018-07339-y |
[11] |
Vennin C, Mélénec P, Rouet R, et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a prometastatic and chemoresistant environment via perlecan[J]. Nat Commun, 2019,10(1):3637. DOI: 10.1038/s41467-019-10968-6.
doi: 10.1038/s41467-019-10968-6 |
[12] |
Pidsley R, Lawrence MG, Zotenko E, et al. Enduring epigenetic landmarks define the cancer microenvironment[J]. Genome Res, 2018,28(5):625-638. DOI: 10.1101/gr.229070.117.
doi: 10.1101/gr.229070.117 |
[13] |
Xiao Q, Zhou D, Rucki AA, et al. Cancer-associated fibroblasts in pancreatic cancer are reprogrammed by tumorinduced alterations in genomic DNA methylation[J]. Cancer Res, 2016,76(18):5395-5404. DOI: 10.1158/0008-5472.CAN-15-3264.
doi: 10.1158/0008-5472.CAN-15-3264 |
[14] |
Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017,214(3):579-596. DOI: 10.1084/jem.20162024.
doi: 10.1084/jem.20162024 |
[15] |
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019,9(8):1102-1123. DOI: 10.1158/2159-8290.CD-19-0094.
doi: 10.1158/2159-8290.CD-19-0094 pmid: 31197017 |
[16] |
Shan T, Lu H, Ji H, et al. Loss of stromal caveolin-1 expression: a novel tumor microenvironment biomarker that can predict poor clinical outcomes for pancreatic cancer[J]. PLoS One, 2014,9(6):e97239. DOI: 10.1371/journal.pone.0097239.
doi: 10.1371/journal.pone.0097239 |
[17] |
Maruggi M, Layng FI, Lemos R Jr, et al. Absence of HIF1A leads to glycogen accumulation and an inflammatory response that enables pancreatic tumor growth[J]. Cancer Res, 2019,79(22):5839-5848. DOI: 10.1158/0008-5472.CAN-18-2994.
doi: 10.1158/0008-5472.CAN-18-2994 |
[18] |
Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013,110(50):20212-20217. DOI: 10.1073/pnas.1320318110.
doi: 10.1073/pnas.1320318110 |
[19] |
Lo A, Wang LS, Scholler J, et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells[J]. Cancer Res, 2015,75(14):2800-2810. DOI: 10.1158/0008-5472.CAN-14-3041.
doi: 10.1158/0008-5472.CAN-14-3041 |
[20] |
Su S, Chen J, Yao H, et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness[J]. Cell, 2018,172(4):841-856. DOI: 10.1016/j.cell.2018.01.009.
doi: 10.1016/j.cell.2018.01.009 |
[21] |
Han X, Li Y, Xu Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem[J]. Nat Commun, 2018,9(1):3390. DOI: 10.1038/s41467-018-05906-x.
doi: 10.1038/s41467-018-05906-x |
[22] |
Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptormedia-ted stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy[J]. Cell, 2014,159(1):80-93. DOI: 10.1016/j.cell.2014.08.007.
doi: S0092-8674(14)01033-2 pmid: 25259922 |
[23] |
Dauer P, Zhao X, Gupta VK, et al. Inactivation of cancerassocia-ted-fibroblasts disrupts oncogenic signaling in pancreatic cancer cells and promotes its regression[J]. Cancer Res, 2018,78(5):1321-1333. DOI: 10.1158/0008-5472.CAN-17-2320.
doi: 10.1158/0008-5472.CAN-17-2320 |
[24] |
Schnittert J, Heinrich MA, Kuninty PR, et al. Reprogramming tumor stroma using an endogenous lipid lipoxin A4 to treat pancreatic cancer[J]. Cancer Lett, 2018,420:247-258. DOI: 10.1016/j.canlet.2018.01.072.
doi: 10.1016/j.canlet.2018.01.072 |
[25] |
Djurec M, Graña O, Lee A, et al. Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors[J]. Proc Natl Acad Sci U S A, 2018,115(6):E1147-E1156. DOI: 10.1073/pnas.1717802115.
doi: 10.1073/pnas.1717802115 |
[26] |
Whatcott CJ, Ng S, Barrett MT, et al. Inhibition of ROCK1 kinase modulates both tumor cells and stromal fibroblasts in pancreatic can-cer[J]. PLoS One, 2017,12(8):e0183871. DOI: 10.1371/journal.pone.0183871.
doi: 10.1371/journal.pone.0183871 |
[27] |
Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat Rev Clin Oncol, 2018,15(4):234-248. DOI: 10.1038/nrclinonc.2018.8.
doi: 10.1038/nrclinonc.2018.8 pmid: 29405201 |
[28] |
Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring[J]. Nature, 2019,569(7754):131-135. DOI: 10.1038/s41586-019-1130-6.
doi: 10.1038/s41586-019-1130-6 pmid: 30996350 |
[29] |
Pinho AV, Van Bulck M, Chantrill L, et al. ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-β signalling[J]. Nat Commun, 2018,9(1):5083. DOI: 10.1038/s41467-018-07497-z.
doi: 10.1038/s41467-018-07497-z |
[30] |
Yang Y, Andersson P, Hosaka K, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages[J]. Nat Commun, 2016,7:11385. DOI: 10.1038/ncomms11385.
doi: 10.1038/ncomms11385 |
[31] |
Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2016,29(6):832-845. DOI: 10.1016/j.ccell.2016.04.014.
doi: S1535-6108(16)30203-3 pmid: 27265504 |
[32] |
Duluc C, Moatassim-Billah S, Chalabi-Dchar M, et al. Pharmacological targeting of the protein synjournal mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance[J]. EMBO Mol Med, 2015,7(6):735-753. DOI: 10.15252/emmm.201404346.
doi: 10.15252/emmm.201404346 |
[33] |
Ko AH, LoConte N, Tempero MA, et al. A Phase Ⅰ study of FOLFIRINOX plus IPI-926, a Hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma[J]. Pancreas, 2016,45(3):370-375. DOI: 10.1097/MPA.0000000000000458.
doi: 10.1097/MPA.0000000000000458 |
[34] | Hingorani SR, Zheng L, Bullock AJ, et al. HALO 202: randomized phase Ⅱ study of PEGPH20 plus nabpaclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma[J]. J Clin Oncol, 2018,36(4):359-366. DOI: 10.1200/JCO.2017.74.9564. |
[35] |
Miller BW, Morton JP, Pinese M, et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy[J]. EMBO Mol Med, 2015,7(8):1063-1076. DOI: 10.15252/emmm.201404827.
doi: 10.15252/emmm.201404827 pmid: 26077591 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[3] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[5] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[6] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[7] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[8] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[9] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[10] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[11] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[12] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[13] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[14] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[15] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||