国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (9): 553-556.doi: 10.3760/cma.j.cn371439-20210517-00107
收稿日期:
2021-05-17
修回日期:
2021-07-28
出版日期:
2021-09-08
发布日期:
2021-09-22
通讯作者:
郑书荣
E-mail:77082566@qq.com
基金资助:
Fu Weida1, Chen Mengjiao2, Guo Guilong1, Zheng Shurong1()
Received:
2021-05-17
Revised:
2021-07-28
Online:
2021-09-08
Published:
2021-09-22
Contact:
Zheng Shurong
E-mail:77082566@qq.com
Supported by:
摘要:
肿瘤微环境(TME)与肿瘤耐药密切相关。TME可分为细胞成分和非细胞成分,细胞成分包括肿瘤相关巨噬细胞、肿瘤相关成纤维细胞、间质干细胞等,可通过招募和分泌多种保护性细胞因子增强肿瘤抗药性;非细胞成分如细胞外基质、缺氧和酸化等,可通过构建物理屏障、影响肿瘤细胞生长代谢等介导耐药。研究TME介导肿瘤耐药的机制,重塑TME,可为抗肿瘤治疗提供新的策略。
傅维达, 陈梦娇, 郭贵龙, 郑书荣. 肿瘤微环境在肿瘤耐药中的作用[J]. 国际肿瘤学杂志, 2021, 48(9): 553-556.
Fu Weida, Chen Mengjiao, Guo Guilong, Zheng Shurong. Role of tumor microenvironment in tumor drug resistance[J]. Journal of International Oncology, 2021, 48(9): 553-556.
[1] |
Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and functions[J]. BMC Biol, 2017, 15(1):53-70. DOI: 10.1186/s12915-017-0392-4.
doi: 10.1186/s12915-017-0392-4 |
[2] |
Almatroodi SA, McDonald CF, Darby IA, et al. Characterization of M1/M2 tumour-associated macrophages (TAMs) and Th1/Th2 cytokine profiles in patients with NSCLC[J]. Cancer Microenviron, 2016, 9(1):1-11. DOI: 10.1007/s12307-015-0174-x.
doi: 10.1007/s12307-015-0174-x |
[3] |
Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2017, 66(1):157-167. DOI: 10.1136/gutjnl-2015-310514.
doi: 10.1136/gutjnl-2015-310514 |
[4] |
Deshmukh SK, Srivastava SK, Poosarla T, et al. Inflammation, immunosuppressive microenvironment and breast cancer: opportunities for cancer prevention and therapy[J]. Ann Transl Med, 2019, 7(20):593. DOI: 10.21037/atm.2019.09.68.
doi: 10.21037/atm.2019.09.68 pmid: 31807574 |
[5] |
Yin Y, Yao S, Hu Y, et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6[J]. Clin Cancer Res, 2017, 23(23):7375-7387. DOI: 10.1158/1078-0432.CCR-17-1283.
doi: 10.1158/1078-0432.CCR-17-1283 |
[6] |
Nakasone ES, Askautrud HA, Kees T, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance[J]. Cancer Cell, 2012, 21(4):488-503. DOI: 10.1016/j.ccr.2012.02.017.
doi: 10.1016/j.ccr.2012.02.017 |
[7] |
Goswami KK, Sarkar M, Ghosh S, et al. Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core: critical role of IL-10/STAT3 signaling[J]. Mol Immunol, 2016, 80:1-10. DOI: 10.1016/j.molimm.2016.10.008.
doi: S0161-5890(16)30214-0 pmid: 27776244 |
[8] |
Rajabpour A, Afgar A, Mahmoodzadeh H, et al. MiR-608 regulating the expression of ribonucleotide reductase M1 and cytidine deaminase is repressed through induced gemcitabine chemoresistance in pancreatic cancer cells[J]. Cancer Chemother Pharmacol, 2017, 80(4):765-775. DOI: 10.1007/s00280-017-3418-2.
doi: 10.1007/s00280-017-3418-2 |
[9] |
Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer[J]. Cancer Cell, 2018, 33(3):463-479. e10. DOI: 10.1016/j.ccell.2018.01.011.
doi: S1535-6108(18)30011-4 pmid: 29455927 |
[10] |
DuFort CC, DelGiorno KE, Hingorani SR, et al. Mounting pressure in the microenvironment: fluids, solids, and cells in pancreatic ductal adenocarcinoma[J]. Gastroenterology, 2016, 150(7):1545-1557. e2. DOI: 10.1053/j.gastro.2016.03.040.
doi: 10.1053/j.gastro.2016.03.040 |
[11] |
Qiao Y, Zhang C, Li A, et al. IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma[J]. Oncogene, 2018, 37(7):873-883. DOI: 10.1038/onc.2017.387.
doi: 10.1038/onc.2017.387 pmid: 29059160 |
[12] |
Zhang H, Xie C, Yue J, et al. Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esopha-geal squamous cell carcinoma[J]. Mol Carcinog, 2017, 56(3):1150-1163. DOI: 10.1002/mc.22581.
doi: 10.1002/mc.22581 |
[13] |
Ireland L, Santos A, Ahmed MS, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived Insulin-Like growth factors[J]. Cancer Res, 2016, 76(23):6851-6863. DOI: 10.1158/0008-5472.CAN-16-1201.
doi: 10.1158/0008-5472.CAN-16-1201 pmid: 27742686 |
[14] |
Zheng G, Huang R, Qiu G, et al. Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis[J]. Cell Tissue Res, 2018, 374(1):1-15. DOI: 10.1007/s00441-018-2871-5.
doi: 10.1007/s00441-018-2871-5 |
[15] |
Shi Y, Du L, Lin L, et al. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets[J]. Nat Rev Drug Discov, 2017, 16(1):35-52. DOI: 10.1038/nrd.2016.193.
doi: 10.1038/nrd.2016.193 |
[16] |
Chen CC, He BC, Chen YL, et al. HIC1 and RassF1A methylation attenuates tubulin expression and cell stiffness in cancer[J]. Int J Mol Sci, 2018, 19(10):2884. DOI: 10.3390/ijms19102884.
doi: 10.3390/ijms19102884 |
[17] | Huang TX, Guan XY, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells[J]. Am J Cancer Res, 2019, 9(9):1889-1904. |
[18] |
He W, Liang B, Wang C, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer[J]. Oncogene, 2019, 38(23):4637-4654. DOI: 10.1038/s41388-019-0747-0.
doi: 10.1038/s41388-019-0747-0 |
[19] |
Yeldag G, Rice A, Del Río Hernández A. Chemoresistance and the self-maintaining tumor microenvironment[J]. Cancers (Basel), 2018, 10(12):471. DOI: 10.3390/cancers10120471.
doi: 10.3390/cancers10120471 |
[20] |
Zheng HC. The molecular mechanisms of chemoresistance in cancers[J]. Oncotarget, 2017, 8(35):59950-59964. DOI: 10.18632/oncotarget.19048.
doi: 10.18632/oncotarget.19048 |
[21] |
Januchowski R, Šwierczewska M, Sterzyńska K, et al. Increased expression of several collagen genes is associated with drug resistance in ovarian cancer cell lines[J]. J Cancer, 2016, 7(10):1295-1310. DOI: 10.7150/jca.15371.
doi: 10.7150/jca.15371 pmid: 27390605 |
[22] |
Wu YH, Huang YF, Chen CC, et al. Akt inhibitor SC66 promotes cell sensitivity to cisplatin in chemoresistant ovarian cancer cells through inhibition of COL11A1 expression[J]. Cell Death Dis, 2019, 10(4):322. DOI: 10.1038/s41419-019-1555-8.
doi: 10.1038/s41419-019-1555-8 |
[23] |
Stowers RS, Allen SC, Sanchez K, et al. Extracellular matrix stiffening induces a malignant phenotypic transition in breast epithelial cells[J]. Cell Mol Bioeng, 2016, 10(1):114-123. DOI: 10.1007/s12195-016-0468-1.
doi: 10.1007/s12195-016-0468-1 |
[24] |
Weniger M, Honselmann KC, Liss AS. The extracellular matrix and pancreatic cancer: a complex relationship[J]. Cancers (Basel), 2018, 10(9):316. DOI: 10.3390/cancers10090316.
doi: 10.3390/cancers10090316 |
[25] |
Senthebane DA, Rowe A, Thomford NE, et al. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer[J]. Int J Mol Sci, 2017, 18(7):1586. DOI: 10.3390/ijms18071586.
doi: 10.3390/ijms18071586 |
[26] |
Govaere O, Wouters J, Petz M, et al. Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche[J]. J Hepatol, 2016, 64(3):609-617. DOI: 10.1016/j.jhep.2015.11.011.
doi: 10.1016/j.jhep.2015.11.011 |
[27] |
Fukazawa S, Shinto E, Tsuda H, et al. Laminin β3 expression as a prognostic factor and a predictive marker of chemoresistance in colo-rectal cancer[J]. Jpn J Clin Oncol, 2015, 45(6):533-540. DOI: 10.1093/jjco/hyv037.
doi: 10.1093/jjco/hyv037 pmid: 25770060 |
[28] |
Mohammed MEA, Elhassan NM. Cytoskeletal and extracellular matrix proteins as markers for metastatic triple negative breast cancer[J]. J Int Med Res, 2019, 47(11):5767-5776. DOI: 10.1177/0300060519877079.
doi: 10.1177/0300060519877079 pmid: 31601144 |
[29] |
Liang C, Shi S, Meng Q, et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going[J]. Exp Mol Med, 2017, 49(12):e406. DOI: 10.1038/emm.2017.255.
doi: 10.1038/emm.2017.255 |
[30] |
肖俊娟, 李岩, 梁婧. 乏氧微环境与肿瘤免疫应答[J]. 国际肿瘤学杂志, 2017, 44(1):31-33. DOI: 10.3760/cma.j.issn.1673-422X.2017.01.008.
doi: 10.3760/cma.j.issn.1673-422X.2017.01.008 |
[31] |
Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of cancer progression[J]. Trends Cancer, 2016, 2(12):758-770. DOI: 10.1016/j.trecan.2016.10.016.
doi: S2405-8033(16)30159-5 pmid: 28741521 |
[32] |
Beklen H, Gulfidan G, Arga KY, et al. Drug repositioning for P-glycoprotein mediated co-expression networks in colorectal cancer[J]. Front Oncol, 2020, 10:1273. DOI: 10.3389/fonc.2020.01273.
doi: 10.3389/fonc.2020.01273 pmid: 32903699 |
[33] |
Manoochehri Khoshinani H, Afshar S, Najafi R. Hypoxia: a double-edged sword in cancer therapy[J]. Cancer Invest, 2016, 34(10):536-545. DOI: 10.1080/07357907.2016.1245317.
doi: 10.1080/07357907.2016.1245317 pmid: 27824512 |
[34] |
Yeo CD, Kang N, Choi SY, et al. The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation[J]. Korean J Intern Med, 2017, 32(4):589-599. DOI: 10.3904/kjim.2016.302.
doi: 10.3904/kjim.2016.302 |
[35] |
Tao J, Yang G, Zhou W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer[J]. J Hematol Oncol, 2021, 14(1):14. DOI: 10.1186/s13045-020-01030-w.
doi: 10.1186/s13045-020-01030-w |
[1] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[2] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[3] | 龚艳, 陈洪雷. 微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[4] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[5] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[6] | 安荣, 刘美华, 王佩晨, 王晓慧. Nrf2在卵巢癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(8): 493-497. |
[7] | 王文德, 曾德. 乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356. |
[8] | 许萌, 姜伟, 朱海涛, 曹雄锋. 癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. |
[9] | 丁浩, 应劲涛, 付茂勇. CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235. |
[10] | 曹梦清, 徐志勇, 施毓婷, 王凯. 三级淋巴结构在肿瘤免疫微环境调节和抗肿瘤治疗中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 169-173. |
[11] | 徐良富, 李袁飞. MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[12] | 朱易, 陈健. 硫化氢在肿瘤发生发展中的作用机制及其供体抗肿瘤作用[J]. 国际肿瘤学杂志, 2023, 50(12): 729-733. |
[13] | 谢露露, 丁江华. 免疫治疗在晚期三阴性乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(11): 672-676. |
[14] | 陶红, 殷红, 罗宏, 陶佳瑜. 靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[15] | 刘小洁, 黄俊星. NADPH氧化酶2在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(10): 618-621. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||