国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (3): 186-190.doi: 10.3760/cma.j.cn371439-20221213-00037
收稿日期:
2022-12-13
修回日期:
2023-01-01
出版日期:
2023-03-08
发布日期:
2023-04-12
通讯作者:
李袁飞,Email: Received:
2022-12-13
Revised:
2023-01-01
Online:
2023-03-08
Published:
2023-04-12
Contact:
Li Yuanfei, Email: 摘要:
近年来,免疫治疗尤其是免疫检查点抑制剂在延长肿瘤晚期患者生存期方面显现出明显优势,肿瘤微环境是影响免疫疗效的重要因素之一。微卫星稳定型结直肠癌患者在联合免疫检查点抑制剂治疗中表现出免疫应答。深入探索微卫星稳定型结直肠癌的肿瘤微环境特点以及应用免疫检查点抑制剂联合治疗策略,可为结直肠癌免疫治疗提供新的思路和方向。
徐良富, 李袁飞. MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190.
Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer[J]. Journal of International Oncology, 2023, 50(3): 186-190.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Boukouris AE, Theochari M, Stefanou D, et al. Latest evidence on immune checkpoint inhibitors in metastatic colorectal cancer: a 2022 update[J]. Crit Rev Oncol Hematol, 2022, 173: 103663. DOI: 10.1016/j.critrevonc.2022.103663.
doi: 10.1016/j.critrevonc.2022.103663 |
[3] | Diaz LA Jr, Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2022, 23(5): 659-670. DOI: 10.1016/S1470- 2045(22)00197-8. |
[4] |
Ganesh K. Optimizing immunotherapy for colorectal cancer[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(2): 93-94. DOI: 10.1038/s41575-021-00569-4.
doi: 10.1038/s41575-021-00569-4 |
[5] |
Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment[J]. Cancer Discov, 2021, 11(4): 933-959. DOI: 10.1158/2159-8290.CD-20-1808.
doi: 10.1158/2159-8290.CD-20-1808 pmid: 33811125 |
[6] |
Chen L, Jiang X, Li Y, et al. How to overcome tumor resistance to anti-PD-1/PD-L1 therapy by immunotherapy modifying the tumor microenvironment in MSS CRC[J]. Clin Immunol, 2022, 237: 108962. DOI: 10.1016/j.clim.2022.108962.
doi: 10.1016/j.clim.2022.108962 |
[7] |
郭龙, 孙永杰. T淋巴细胞亚群、NK细胞与结直肠癌患者病理分期的关系[J]. 航空航天医学杂志, 2022, 33(9): 1064-1067. DOI: 10.3969/j.issn.2095-1434.2022.09.015.
doi: 10.3969/j.issn.2095-1434.2022.09.015 |
[8] |
van der Veeken J, Campbell C, Pritykin Y, et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells[J]. Immunity, 2022, 55(7): 1173-1184. e7. DOI: 10.1016/j.immuni.2022.05.010.
doi: 10.1016/j.immuni.2022.05.010 pmid: 35700740 |
[9] |
Boissière-Michot F, Lazennec G, Frugier H, et al. Characterization of an adaptive immune response in microsatellite-instable colorectal cancer[J]. Oncoimmunology, 2014, 3(6): e29256. DOI: 10.4161/onci.29256.
doi: 10.4161/onci.29256 |
[10] |
Masuda K, Kornberg A, Miller J, et al. Multiplexed single-cell analysis reveals prognostic and nonprognostic T cell types in human colorectal cancer[J]. JCI Insight, 2022, 7(7): e154646. DOI: 10.1172/jci.insight.154646.
doi: 10.1172/jci.insight.154646 |
[11] | Wu D, Zhu Y. Role of kynurenine in promoting the generation of exhausted CD8+ T cells in colorectal cancer[J]. Am J Transl Res, 2021, 13(3): 1535-1547. |
[12] |
Zhang X, Liu X, Zhou W, et al. Blockade of IDO-kynurenine-AhR axis ameliorated colitis-associated colon cancer via inhibiting immune tolerance[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(4): 1179-1199. DOI: 10.1016/j.jcmgh.2021.05.018.
doi: 10.1016/j.jcmgh.2021.05.018 pmid: 34087454 |
[13] |
Hegde S, Leader AM, Merad M. MDSC: markers, development, states, and unaddressed complexity[J]. Immunity, 2021, 54(5): 875-884. DOI: 10.1016/j.immuni.2021.04.004.
doi: 10.1016/j.immuni.2021.04.004 pmid: 33979585 |
[14] |
Yin K, Xia X, Rui K, et al. Myeloid-derived suppressor cells: a new and pivotal player in colorectal cancer progression[J]. Front Oncol, 2020, 10: 610104. DOI: 10.3389/fonc.2020.610104.
doi: 10.3389/fonc.2020.610104 |
[15] |
李奕建, 钟世彪, 陈利生. 外周血MDSC水平及NLR、PLR比值对结直肠癌患者临床预后评估的价值[J]. 中华细胞与干细胞杂志(电子版), 2019, 9(3): 149-153. DOI: 10.3877/cma.j.issn.2095-1221.2019.03.004.
doi: 10.3877/cma.j.issn.2095-1221.2019.03.004 |
[16] |
Bhat AA, Nisar S, Singh M, et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: emerging avenue for targeted therapy[J]. Cancer Commun (Lond), 2022, 42(8): 689-715. DOI: 10.1002/cac2.12295.
doi: 10.1002/cac2.12295 |
[17] |
Li S, Na R, Li X, et al. Targeting interleukin-17 enhances tumor response to immune checkpoint inhibitors in colorectal cancer[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(4): 188758. DOI: 10.1016/j.bbcan.2022.188758.
doi: 10.1016/j.bbcan.2022.188758 |
[18] |
Liu C, Liu R, Wang B, et al. Blocking IL-17a enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer[J]. J Immunother Cancer, 2021, 9(1): e001895. DOI: 10.1136/jitc-2020-001895.
doi: 10.1136/jitc-2020-001895 |
[19] |
Kim CG, Jang M, Kim Y, et al. VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers[J]. Sci Immunol, 2019, 4(41): eaay0555. DOI: 10.1126/sciimmunol.aay0555.
doi: 10.1126/sciimmunol.aay0555 |
[20] |
Sato H, Okonogi N, Nakano T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment[J]. Int J Clin Oncol, 2020, 25(5): 801-809. DOI: 10.1007/s10147-020-01666-1.
doi: 10.1007/s10147-020-01666-1 pmid: 32246277 |
[21] |
Seyedin SN, Hasibuzzaman MM, Pham V, et al. Combination therapy with radiation and PARP inhibition enhances responsiveness to anti-PD-1 therapy in colorectal tumor models[J]. Int J Radiat Oncol Biol Phys, 2020, 108(1): 81-92. DOI: 10.1016/j.ijrobp.2020.01.030.
doi: 10.1016/j.ijrobp.2020.01.030 |
[22] |
Yang J, Zhou W, Ma Y, et al. The response of PD-1 inhibitor combined with radiotherapy and GM-CSF(PRaG) with or without IL-2 in microsatellite stable metastatic colorectal cancer: analysis of pooled data from two phase Ⅱ trials[J]. J Clin Oncol, 2022, 40(suppl 16): e15561. DOI: 10.1200/JCO.2022.40.16_suppl.e15561.
doi: 10.1200/JCO.2022.40.16_suppl.e15561 |
[23] |
Yang J, Bi F, Gou H. Complete pathologic response after concurrent treatment with pembrolizumab and radiotherapy in metastatic colorectal cancer: a case report[J]. Onco Targets Ther, 2021, 14: 2555-2561. DOI: 10.2147/OTT.S298333.
doi: 10.2147/OTT.S298333 |
[24] |
Guan Y, Kraus SG, Quaney MJ, et al. FOLFOX chemotherapy ameliorates CD8 T lymphocyte exhaustion and enhances checkpoint blockade efficacy in colorectal cancer[J]. Front Oncol, 2020, 10: 586. DOI: 10.3389/fonc.2020.00586.
doi: 10.3389/fonc.2020.00586 pmid: 32391270 |
[25] |
Men Q, Huang J, Duan Y, et al. PD-1 blockade combined chemotherapy and bevacizumab in DNA mismatch repair-proficient/microsatellite stable colorectal liver metastases[J]. J Clin Oncol, 2022, 40(suppl 16): e15547. DOI: 10.1200/JCO.2022.40.16_suppl.e15547.
doi: 10.1200/JCO.2022.40.16_suppl.e15547 |
[26] |
Zheng Y, Fu Y, Wang PP, et al. Neoantigen: a promising target for the immunotherapy of colorectal cancer[J]. Dis Markers, 2022, 2022: 8270305. DOI: 10.1155/2022/8270305.
doi: 10.1155/2022/8270305 |
[27] |
Jardim DL, Goodman A, de Melo Gagliato D, et al. The challenges of tumor mutational burden as an immunotherapy biomarker[J]. Cancer Cell, 2021, 39(2): 154-173. DOI: 10.1016/j.ccell.2020.10.001.
doi: 10.1016/j.ccell.2020.10.001 pmid: 33125859 |
[28] |
Westcott PMK, Sacks NJ, Schenkel JM, et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer[J]. Nat Cancer, 2021, 2(10): 1071-1085. DOI: 10.1038/s43018-021-00247-z.
doi: 10.1038/s43018-021-00247-z |
[29] |
Caushi JX, Zhang J, Ji Z, et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers[J]. Nature, 2021, 596(7870): 126-132. DOI: 10.1038/s41586-021-03752-4.
doi: 10.1038/s41586-021-03752-4 |
[30] |
Graham LS, Pritchard CC, Schweizer MT. Hypermutation, mismatch repair deficiency, and defining predictors of response to checkpoint blockade[J]. Clin Cancer Res, 2021, 27(24): 6662-6665. DOI: 10.1158/1078-0432.CCR-21-3031.
doi: 10.1158/1078-0432.CCR-21-3031 pmid: 34580112 |
[31] |
Tondini E, Arakelian T, Oosterhuis K, et al. A poly-neoantigen DNA vaccine synergizes with PD-1 blockade to induce T cell-mediated tumor control[J]. Oncoimmunology, 2019, 8(11): 1652539. DOI: 10.1080/2162402X.2019.1652539.
doi: 10.1080/2162402X.2019.1652539 |
[32] |
Palmer CD, Rappaport AR, Davis MJ, et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results[J]. Nat Med, 2022, 28(8): 1619-1629. DOI: 10.1038/s41591-022-01937-6.
doi: 10.1038/s41591-022-01937-6 pmid: 35970920 |
[33] |
Suarez-Carmona M, Williams A, Schreiber J, et al. Combined inhibition of CXCL12 and PD-1 in MSS colorectal and pancreatic cancer: modulation of the microenvironment and clinical effects[J]. J Immunother Cancer, 2021, 9(10): e002505. DOI: 10.1136/jitc-2021-002505.
doi: 10.1136/jitc-2021-002505 |
[34] |
Liu N, Shan F, Ma M. Strategic enhancement of immune checkpoint inhibition in refractory colorectal cancer: trends and future prospective[J]. Int Immunopharmacol, 2021, 99: 108017. DOI: 10.1016/j.intimp.2021.108017.
doi: 10.1016/j.intimp.2021.108017 |
[35] |
Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivo-lumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phaseⅠb trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061. DOI: 10.1200/JCO.19.03296.
doi: 10.1200/JCO.19.03296 pmid: 32343640 |
[36] |
Wang Y, Wei B, Gao J, et al. Combination of fruquintinib and anti-PD-1 for the treatment of colorectal cancer[J]. J Immunol, 2020, 205(10): 2905-2915. DOI: 10.4049/jimmunol.2000463.
doi: 10.4049/jimmunol.2000463 pmid: 33028620 |
[37] |
Fang X, Zhong C, Zhu N, et al. A phase 2 trial of sintilimab (IBI 308) in combination with CAPEOX and bevacizumab (BBCAPX) as first-line treatment in patients with RAS-mutant, microsatellite stable, unresectable metastatic colorectal cancer[J]. J Clin Oncol, 2022, 40(16_suppl): 3563. DOI: 10.1200/JCO.2022.40.16_suppl.3563.
doi: 10.1200/JCO.2022.40.16_suppl.3563 |
[38] |
Huyghe N, De Cuyper A, Sinapi I, et al. Interim analysis of the phase Ⅱ AVETUXIRI trial: avelumab combined with cetuximab and irinotecan for treatment of refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC)[J]. J Clin Oncol, 2022, 40(16_suppl): 3595. DOI: 10.1200/JCO.2022.40.16_suppl.3595.
doi: 10.1200/JCO.2022.40.16_suppl.3595 |
[39] |
Bocobo AG, Wang R, Behr S, et al. Phase Ⅱ study of pembrolizumab plus capecitabine and bevacizumab in microsatellite stable (MSS) metastatic colorectal cancer (mCRC)[J]. J Clin Oncol, 2022, 40(16_suppl): 3565. DOI: 10.1200/JCO.2022.40.16_suppl.3565.
doi: 10.1200/JCO.2022.40.16_suppl.3565 |
[40] |
Malogolovkin A, Gasanov N, Egorov A, et al. Combinatorial approaches for cancer treatment using oncolytic viruses: projecting the perspectives through clinical trials outcomes[J]. Viruses, 2021, 13(7): 1271. DOI: 10.3390/v13071271.
doi: 10.3390/v13071271 |
[41] |
Ylösmäki E, Cerullo V. Design and application of oncolytic viruses for cancer immunotherapy[J]. Curr Opin Biotechnol, 2020, 65: 25-36. DOI: 10.1016/j.copbio.2019.11.016.
doi: 10.1016/j.copbio.2019.11.016 |
[42] |
Ma R, Li Z, Chiocca EA, et al. The emerging field of oncolytic virus-based cancer immunotherapy[J]. Trends Cancer, 2023, 9(2): 122-139. DOI: 10.1016/j.trecan.2022.10.003.
doi: 10.1016/j.trecan.2022.10.003 |
[43] |
Carr MJ, Sun J, DePalo D, et al. Talimogene laherparepvec (T-VEC) for the treatment of advanced locoregional melanoma after failure of immunotherapy: an international multi-institutional experience[J]. Ann Surg Oncol, 2022, 29(2): 791-801. DOI: 10.1245/s10434-021-10910-5.
doi: 10.1245/s10434-021-10910-5 |
[44] |
Ahamadi M, Kast J, Chen PW, et al. Oncolytic viral kinetics mechanistic modeling of Talimogene Laherparepvec (T-VEC) a first-in-class oncolytic viral therapy in patients with advanced melanoma[J]. CPT Pharmacometrics Syst Pharmacol, 2023, 12(2): 250-260. DOI: 10.1002/psp4.12898.
doi: 10.1002/psp4.12898 |
[45] |
Kim C, Chon HJ, Lee HJ, et al. Abstract 1914: orally available oncolytic reovirus, RC402, effectively promotes anti-cancer immunity and synergizes with immune checkpoint blockade in colon cancer[J]. Cancer Res, 2021, 81(13_Supplement): 1914. DOI: 10.1158/1538-7445. AM2021-1914.
doi: 10.1158/1538-7445.AM2021-2021 |
[46] |
Zhang B, Huang J, Tang J, et al. Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: a multicenter, phase Ⅰ/Ⅱ clinical trial[J]. J Immunother Cancer, 2021, 9(4): e002224. DOI: 10.1136/jitc-2020-002224.
doi: 10.1136/jitc-2020-002224 |
[47] |
Morelli MP, Xie C, Brar G, et al. A phase Ⅰ/Ⅱ study of pexa-vec oncolytic virus in combination with immune checkpoint inhibition in refractory colorectal cancer: safety report[J]. J Clin Oncol, 2019, 37(suppl 4): 646. DOI: 10.1200/JCO.2019.37.4_suppl.646.
doi: 10.1200/JCO.2019.37.4_suppl.646 |
[48] |
Coupez D, Hulo P, Touchefeu Y, et al. Pembrolizumab for the treatment of colorectal cancer[J]. Expert Opin Biol Ther, 2020, 20(3): 219-226. DOI: 10.1080/14712598.2020.1718095.
doi: 10.1080/14712598.2020.1718095 pmid: 31952453 |
[49] |
Verschoor YL, van den Berg J, Beets G, et al. Neoadjuvant nivolumab, ipilimumab, and celecoxib in MMR-proficient and MMR-deficient colon cancers: final clinical analysis of the NICHE study[J]. J Clin Oncol, 2022, 40(16_suppl): 3511. DOI: 10.1200/JCO.2022.40.16_suppl.3511.
doi: 10.1200/JCO.2022.40.16_suppl.3511 |
[50] |
Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 Study[J]. JAMA Oncol, 2020, 6(6): 831-838. DOI: 10.1001/jamaoncol.2020.0910.
doi: 10.1001/jamaoncol.2020.0910 pmid: 32379280 |
[51] |
Chen Y, Liu C, Zhu S, et al. PD-1/PD-L1 immune checkpoint blockade-based combinational treatment: immunotherapeutic amplification strategies against colorectal cancer[J]. Int Immunopharmacol, 2021, 96: 107607. DOI: 10.1016/j.intimp.2021.107607.
doi: 10.1016/j.intimp.2021.107607 |
[1] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[2] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[3] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[4] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[5] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[6] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[7] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[8] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[9] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[10] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[11] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[12] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[13] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[14] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[15] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||