[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
Rahbari NN, Carr PR, Jansen L, et al. Time of metastasis and outcome in colorectal cancer[J]. Ann Surg, 2019, 269(3): 494-502. DOI: 10.1097/SLA.0000000000002564.
pmid: 29064893
|
[3] |
Siegel RL, Wagle NS, Cercek A, et al. Colorectal cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(3): 233-254. DOI: 10.3322/caac.21772.
|
[4] |
Wu Y, Mao A, Wang H, et al. Association of simultaneous vs delayed resection of liver metastasis with complications and survival among adults with colorectal cancer[J]. JAMA Netw Open, 2022, 5(9): e2231956. DOI: 10.1001/jamanetworkopen.2022.31956.
|
[5] |
van Dam PJ, van der Stok EP, Teuwen LA, et al. International consensus guidelines for scoring the histopathological growth patterns of liver metastasis[J]. Br J Cancer, 2017, 117(10): 1427-1441. DOI: 10.1038/bjc.2017.334.
|
[6] |
Latacz E, Höppener D, Bohlok A, et al. Histopathological growth patterns of liver metastasis: updated consensus guidelines for pattern scoring, perspectives and recent mechanistic insights[J]. Br J Cancer, 2022, 127(6): 988-1013. DOI: 10.1038/s41416-022-01859-7.
|
[7] |
Vermeulen PB, Colpaert C, Salgado R, et al. Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia[J]. J Pathol, 2001, 195(3): 336-342. DOI: 10.1002/path.966.
pmid: 11673831
|
[8] |
Stessels F, Van den Eynden G, Van der Auwera I, et al. Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia[J]. Br J Cancer, 2004, 90(7): 1429-1436. DOI: 10.1038/sj.bjc.6601727.
|
[9] |
Galjart B, Nierop PMH, van der Stok EP, et al. Angiogenic desmoplastic histopathological growth pattern as a prognostic marker of good outcome in patients with colorectal liver metastases[J]. Angiogenesis, 2019, 22(2): 355-368. DOI: 10.1007/s10456-019-09661-5.
pmid: 30637550
|
[10] |
Haas G, Fan S, Ghadimi M, et al. Different forms of tumor vascularization and their clinical implications focusing on vessel co-option in colorectal cancer liver metastases[J]. Front Cell Dev Biol, 2021, 9: 612774. DOI: 10.3389/fcell.2021.612774.
|
[11] |
Frentzas S, Simoneau E, Bridgeman VL, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases[J]. Nat Med, 2016, 22(11): 1294-1302. DOI: 10.1038/nm.4197.
pmid: 27748747
|
[12] |
Latacz E, Caspani E, Barnhill R, et al. Pathological features of vessel co-option versus sprouting angiogenesis[J]. Angiogenesis, 2020, 23(1): 43-54. DOI: 10.1007/s10456-019-09690-0.
pmid: 31655928
|
[13] |
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637): 321-330. DOI: 10.1038/nature21349.
|
[14] |
Stremitzer S, Vermeulen P, Graver S, et al. Immune phenotype and histopathological growth pattern in patients with colorectal liver metastases[J]. Br J Cancer, 2020, 122(10): 1518-1524. DOI: 10.1038/s41416-020-0812-z.
|
[15] |
Höppener DJ, Nierop PMH, Hof J, et al. Enrichment of the tumour immune microenvironment in patients with desmoplastic colorectal liver metastasis[J]. Br J Cancer, 2020, 123(2): 196-206. DOI: 10.1038/s41416-020-0881-z.
|
[16] |
Liang JY, Xi SY, Shao Q, et al. Histopathological growth patterns correlate with the immunoscore in colorectal cancer liver metastasis patients after hepatectomy[J]. Cancer Immunol Immunother, 2020, 69(12): 2623-2634. DOI: 10.1007/s00262-020-02632-6.
|
[17] |
Garcia-Vicién G, Mezheyeuski A, Micke P, et al. Spatial immunology in liver metastases from colorectal carcinoma according to the histologic growth pattern[J]. Cancers (Basel), 2022, 14(3): 689. DOI: 10.3390/cancers14030689.
|
[18] |
Jongsma MME, Aardoom MA, Cozijnsen MA, et al. First-line treatment with infliximab versus conventional treatment in children with newly diagnosed moderate-to-severe Crohn's disease: an open-label multicentre randomised controlled trial[J]. Gut, 2022, 71(1): 34-42. DOI: 10.1136/gutjnl-2020-322339.
pmid: 33384335
|
[19] |
Yu J, Green MD, Li S, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination[J]. Nat Med, 2021, 27(1): 152-164. DOI: 10.1038/s41591-020-1131-x.
pmid: 33398162
|
[20] |
Höppener DJ, Nierop PMH, Herpel E, et al. Histopathological growth patterns of colorectal liver metastasis exhibit little heterogeneity and can be determined with a high diagnostic accuracy[J]. Clin Exp Metastasis, 2019, 36(4): 311-319. DOI: 10.1007/s10585-019-09975-0.
|
[21] |
Buisman FE, van der Stok EP, Galjart B, et al. Histopathological growth patterns as biomarker for adjuvant systemic chemotherapy in patients with resected colorectal liver metastases[J]. Clin Exp Metastasis, 2020, 37(5): 593-605. DOI: 10.1007/s10585-020-10048-w.
|
[22] |
Rigamonti A, Feuerhake F, Donadon M, et al. Histopathological and immune prognostic factors in colo-rectal liver metastases[J]. Cancers (Basel), 2021, 13(5): 1075. DOI: 10.3390/cancers13051075.
|
[23] |
Höppener DJ, Galjart B, Nierop PMH, et al. Histopathological growth patterns and survival after resection of colorectal liver metastasis: an external validation study[J]. JNCI Cancer Spectr, 2021, 5(3): pkab026. DOI: 10.1093/jncics/pkab026.
|
[24] |
Viganò L, Branciforte B, Laurenti V, et al. The histopathological growth pattern of colorectal liver metastases impacts local recurrence risk and the adequate width of the surgical margin[J]. Ann Surg Oncol, 2022, 29(9): 5515-5524. DOI: 10.1245/s10434-022-11717-8.
|
[25] |
Nierop PMH, Galjart B, Höppener DJ, et al. Salvage treatment for recurrences after first resection of colorectal liver metastases: the impact of histopathological growth patterns[J]. Clin Exp Metastasis, 2019, 36(2): 109-118. DOI: 10.1007/s10585-019-09960-7.
|
[26] |
Wei M, Zhang Y, Yang X, et al. Claudin-2 promotes colorectal cancer growth and metastasis by suppressing NDRG1 transcription[J]. Clin Transl Med, 2021, 11(12): e667. DOI: 10.1002/ctm2.667.
pmid: 34965023
|
[27] |
Paquet-Fifield S, Koh SL, Cheng L, et al. Tight junction protein claudin-2 promotes self-renewal of human colorectal cancer stem-like cells[J]. Cancer Res, 2018, 78(11): 2925-2938. DOI: 10.1158/0008-5472.CAN-17-1869.
pmid: 29510994
|
[28] |
Wang YB, Shi Q, Li G, et al. MicroRNA-488 inhibits progression of colorectal cancer via inhibition of the mitogen-activated protein kinase pathway by targeting claudin-2[J]. Am J Physiol Cell Physiol, 2019, 316(1): C33-C47. DOI: 10.1152/ajpcell.00047.2018.
|
[29] |
Tabariès S, Annis MG, Lazaris A, et al. Claudin-2 promotes colorectal cancer liver metastasis and is a biomarker of the replacement type growth pattern[J]. Commun Biol, 2021, 4(1): 657. DOI: 10.1038/s42003-021-02189-9.
pmid: 34079064
|
[30] |
Cheng J, Wei J, Tong T, et al. Prediction of histopathologic growth patterns of colorectal liver metastases with a noninvasive imaging method[J]. Ann Surg Oncol, 2019, 26(13): 4587-4598. DOI: 10.1245/s10434-019-07910-x.
pmid: 31605342
|
[31] |
Han Y, Chai F, Wei J, et al. Identification of predominant histopathological growth patterns of colorectal liver metastasis by multi-habitat and multi-sequence based radiomics analysis[J]. Front Oncol, 2020, 10: 1363. DOI: 10.3389/fonc.2020.01363.
pmid: 32923388
|
[32] |
Starmans MPA, Buisman FE, Renckens M, et al. Distinguishing pure histopathological growth patterns of colorectal liver metastases on CT using deep learning and radiomics: a pilot study[J]. Clin Exp Metastasis, 2021, 38(5): 483-494. DOI: 10.1007/s10585-021-10119-6.
|