国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (6): 376-381.doi: 10.3760/cma.j.cn371439-20240429-00065
收稿日期:
2024-04-29
修回日期:
2024-05-12
出版日期:
2024-06-08
发布日期:
2024-06-28
通讯作者:
褚衍六,Email: 基金资助:
Gao Fan1, Wang Ping2, Du Chao2, Chu Yanliu2()
Received:
2024-04-29
Revised:
2024-05-12
Online:
2024-06-08
Published:
2024-06-28
Contact:
Chu Yanliu, Email: Supported by:
摘要:
近年来,肠道菌群逐渐成为恶性肿瘤治疗相关研究的热点。肠道机会致病菌(如具核梭杆菌、脆弱拟杆菌)、肠道益生菌(如丁酸梭菌、乳酸菌)以及肠道致病菌(如沙门氏菌、志贺菌)可通过影响信号通路、调节自噬、调节免疫反应、产生代谢产物及毒素以及通过粪菌移植等途径影响结直肠癌放化疗和免疫治疗疗效及相关不良反应,同时为结直肠癌靶向治疗提供大量潜在靶点。进一步研究肠道菌群与结直肠癌非手术治疗的关系,可为结直肠癌非手术治疗相关基础与临床研究提供参考。
高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381.
Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer[J]. Journal of International Oncology, 2024, 51(6): 376-381.
[1] | 周雄, 胡明, 李子帅, 等. 2020年全球及中国结直肠癌流行状况分析[J]. 海军军医大学学报, 2022, 43(12): 1356-1364. DOI: 10.16781/j.CN31-2187/R.20220593. |
[2] | 陈海宁, 王自强, 于永扬, 等. 从全球趋势看我国结直肠癌防控:挑战与策略[J]. 中国科学(生命科学), 2022, 52(11): 1612-1625. |
[3] | 宋德心, 王伟东, 高瑞祺, 等. 肠道菌群在结直肠癌发生发展和诊断治疗中的作用研究进展[J]. 中国普通外科杂志, 2022, 31(4): 527-536. DOI: 10.7659/j.issn.1005-6947.2022.04.015. |
[4] | Jiang SS, Xie YL, Xiao XY, et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer[J]. Cell Host Microbe, 2023, 31(5): 781-797.e9. DOI: 10.1016/j.chom.2023.04.010. |
[5] | Wang ZK, Dan WY, Zhang NN, et al. Colorectal cancer and gut microbiota studies in China[J]. Gut Microbes, 2023, 15(1): 2236364. DOI: 10.1080/19490976.2023.2236364. |
[6] | Gao YH, Bi DX, Xie RT, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 398. DOI: 10.1038/s41392-021-00795-x. |
[7] |
Yu TC, Guo FF, Yu YN, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563.e16. DOI: 10.1016/j.cell.2017.07.008.
pmid: 28753429 |
[8] |
Zhang S, Yang YZ, Weng WH, et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 14. DOI: 10.1186/s13046-018-0985-y.
pmid: 30630498 |
[9] | Dong JL, Li Y, Xiao HW, et al. Oral microbiota affects the efficacy and prognosis of radiotherapy for colorectal cancer in mouse models[J]. Cell Rep, 2021, 37(4): 109886. DOI: 10.1016/j.celrep.2021.109886. |
[10] | 吕志堂, 许晓娜, 张怡君. 脆弱拟杆菌在炎症性肠病、结直肠癌促进、调控及防治中的作用[J]. 微生物学杂志, 2020, 40(4): 1-8. DOI: 10.3969/j.issn.1005-7021.2020.04.001. |
[11] |
Boleij A, Hechenbleikner EM, Goodwin AC, et al. The bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients[J]. Clin Infect Dis, 2015, 60(2): 208-215. DOI: 10.1093/cid/ciu787.
pmid: 25305284 |
[12] |
Wu SG, Dreyfus LA, Tzianabos AO, et al. Diversity of the metalloprotease toxin produced by enterotoxigenic bacteroides fragilis[J]. Infect Immun, 2002, 70(5): 2463-2471. DOI: 10.1128/iai.70.5.2463-2471.2002.
pmid: 11953383 |
[13] | Xie XL, Jiang D, Zhou XB, et al. Recombinant bacteroides fragilis enterotoxin-1 (rBFT-1) promotes proliferation of colorectal cancer via CCL3-related molecular pathways[J]. Open Life Sci, 2021, 16(1): 408-418. DOI: 10.1515/biol-2021-0043. |
[14] | Lv Y, Ye T, Wang HP, et al. Suppression of colorectal tumorige-nesis by recombinant bacteroides fragilis enterotoxin-2 in vivo[J]. World J Gastroenterol, 2017, 23(4): 603-613. DOI: 10.3748/wjg.v23.i4.603. |
[15] |
Sittipo P, Lobionda S, Choi K, et al. Toll-Like receptor 2-mediated suppression of colorectal cancer pathogenesis by polysaccharide a from bacteroides fragilis[J]. Front Microbiol, 2018, 9: 1588. DOI: 10.3389/fmicb.2018.01588.
pmid: 30065713 |
[16] | Lee YK, Mehrabian P, Boyajian SL, et al. The protective role of bacteroides fragilis in a murine model of colitis-associated colorectal cancer[J]. mSphere, 2018, 3(6): e00587-18. DOI: 10.1128/mSphere.00587-18. |
[17] | Pandey H, Tang DWT, Wong SH, et al. Gut microbiota in colorectal cancer: biological role and therapeutic opportunities[J]. Cancers (Basel), 2023, 15(3): 866. DOI: 10.3390/cancers15030866. |
[18] |
Spanogiannopoulos P, Kyaw TS, Guthrie BGH, et al. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism[J]. Nat Microbiol, 2022, 7(10): 1605-1620. DOI: 10.1038/s41564-022-01226-5.
pmid: 36138165 |
[19] |
Lopès A, Billard E, Casse AH, et al. Colibactin-positive escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer[J]. Int J Cancer, 2020, 146(11): 3147-3159. DOI: 10.1002/ijc.32920.
pmid: 32037530 |
[20] |
Gagnière J, Bonnin V, Jarrousse AS, et al. Interactions between microsatellite instability and human gut colonization by escherichia coli in colorectal cancer[J]. Clin Sci (Lond), 2017, 131(6): 471-485. DOI: 10.1042/cs20160876.
pmid: 28093453 |
[21] |
Alizadeh S, Esmaeili A, Omidi Y. Anti-cancer properties of escherichia coli nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways[J]. Iran J Basic Med Sci, 2020, 23(7): 886-893. DOI: 10.22038/ijbms.2020.43016.10115.
pmid: 32774810 |
[22] | Chiang CJ, Hong YH. In situ delivery of biobutyrate by probiotic escherichia coli for cancer therapy[J]. Sci Rep, 2021, 11(1): 18172. DOI: 10.1038/s41598-021-97457-3. |
[23] |
Yu XL, Lin CS, Yu J, et al. Bioengineered escherichia coli nissle 1917 for tumour-targeting therapy[J]. Microb Biotechnol, 2020, 13(3): 629-636. DOI: 10.1111/1751-7915.13523.
pmid: 31863567 |
[24] | Nougayrède JP, Chagneau CV, Motta JP, et al. A toxic friend: genotoxic and mutagenic activity of the probiotic strain escherichia coli nissle 1917[J]. mSphere, 2021, 6(4): e0062421. DOI: 10.1128/mSphere.00624-21. |
[25] | Kaiser P. Methionine dependence of cancer[J]. Biomolecules, 2020, 10(4): 568. DOI: 10.3390/biom10040568. |
[26] | Kubota Y, Han QH, Hamada K, et al. Oral installation of recombinant methioninase-producing escherichia coli into the microbiome inhibits colon-cancer growth in a syngeneic mouse model[J]. Cancer Genomics Proteomics, 2022, 19(6): 683-691. DOI: 10. 21873/cgp.20351. |
[27] | Zhou M, Yuan W, Yang B, et al. Clostridium butyricum inhibits the progression of colorectal cancer and alleviates intestinal inflammation via the myeloid differentiation factor 88(MyD88)-nuclear factor-kappa B(NF-κB)signaling pathway[J]. Ann Transl Med, 2022, 10(8): 478. DOI: 10.21037/atm-22-1670. |
[28] | He Y, Fu LH, Li YP, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity[J]. Cell Metab, 2021, 33(5): 988-1000.e7. DOI: 10.1016/j.cmet.2021.03.002. |
[29] | Nomura M, Nagatomo R, Doi K, et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors[J]. JAMA Netw Open, 2020, 3(4): e202895. DOI: 10.1001/jamanetworkopen.2020.2895. |
[30] | Chen JZ, Zhao KN, Vitetta L. Effects of intestinal microbial- elaborated butyrate on oncogenic signaling pathways[J]. Nutrients, 2019, 11(5): 1026. DOI: 10.3390/nu11051026. |
[31] | Stoeva MK, Garcia-So J, Justice N, et al. Butyrate-producing human gut symbiont, clostridium butyricum, and its role in health and disease[J]. Gut Microbes, 2021, 13(1): 1-28. DOI: 10.1080/19490976.2021.1907272. |
[32] | Pu W, Zhang H, Zhang T, et al. Inhibitory effects of clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice[J]. Front Immunol, 2023: 1004756. DOI: 10.3389/fimmu.2023.1004756. |
[33] |
Chen DF, Jin DC, Huang SM, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating wnt signaling and gut microbiota[J]. Cancer Lett, 2020, 469: 456-467. DOI: 10.1016/j.canlet.2019.11.019.
pmid: 31734354 |
[34] | Hradicka P, Beal J, Kassayova M, et al. A novel lactic acid bacteria mixture: macrophage-targeted prophylactic intervention in colorectal cancer management[J]. Microorganisms, 2020, 8(3): 387. DOI: 10.3390/microorganisms8030387. |
[35] | An JJ, Ha EM. Combination therapy of lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal cancer cells[J]. J Microbiol Biotechnol, 2016, 26(8): 1490-1503. DOI: 10.4014/jmb.1605.05024. |
[36] |
An JJ, Ha EM. Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression[J]. J Microbiol, 2020, 58(11): 967-977. DOI: 10.1007/s12275-020-0375-y.
pmid: 33125671 |
[37] |
An JJ, Ha EM. Extracellular vesicles derived from lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells[J]. J Microbiol, 2022, 60(7): 735-745. DOI: 10.1007/s12275-022-2201-1.
pmid: 35781627 |
[38] | An JJ, Seok H, Ha EM. GABA-producing lactobacillus plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant colorectal cancer cells via GABAB receptor signaling[J]. J Microbiol, 2021, 59(2): 202-216. DOI: 10.1007/s12275-021-0562-5. |
[39] | Kim HJ, An JJ, Ha EM. Lactobacillus plantarum-derived metabolites sensitize the tumor-suppressive effects of butyrate by regula-ting the functional expression of SMCT1 in 5-FU-resistant colorectal cancer cells[J]. J Microbiol, 2022, 60(1): 100-117. DOI: 10.1007/s12275-022-1533-1. |
[40] | Zhang QQ, Zhao Q, Li T, et al. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity[J]. Cell Metab, 2023, 35(6): 943-960.e9. DOI: 10.1016/j.cmet.2023.04.015. |
[41] |
Amin M, Navidifar T, Saeb S, et al. Tumor-targeted induction of intrinsic apoptosis in colon cancer cells by lactobacillus plantarum and lactobacillus rhamnosus strains[J]. Mol Biol Rep, 2023, 50(6): 5345-5354. DOI: 10.1007/s11033-023-08445-x.
pmid: 37155013 |
[42] | Si W, Liang H, Bugno J, et al. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type Ⅰ interferon and improves response to immune checkpoint blockade[J]. Gut, 2022, 71(3): 521-533. DOI: 10.1136/gutjnl-2020-323426. |
[43] | Owens JA, Saeedi BJ, Naudin CR, et al. Lactobacillus rhamnosus GG orchestrates an antitumor immune response[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(4): 1311-1327. DOI: 10.1016/j.jcmgh.2021.06.001. |
[44] | Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study[J]. Br J Cancer, 2007, 97(8): 1028-1034. DOI: 10.1038/sj.bjc.6603990. |
[45] | Dougherty MW, Jobin C. Intestinal bacteria and colorectal cancer: etiology and treatment[J]. Gut Microbes, 2023, 15(1): 2185028. DOI: 10.1080/19490976.2023.2185028. |
[46] |
Li Q, Hu W, Liu WX, et al. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase[J]. Gastroenterology, 2021, 160(4): 1179-1193.e14. DOI: 10.1053/j.gastro.2020.09.003.
pmid: 32920015 |
[47] |
Yenuganti VR, Yadala R, Azad R, et al. In vitro evaluation of anticancer effects of different probiotic strains on HCT-116 cell line[J]. J Appl Microbiol, 2021, 131(4): 1958-1969. DOI: 10.1111/jam.15060.
pmid: 33694215 |
[48] |
Wang YH, Yao N, Wei KK, et al. The efficacy and safety of probiotics for prevention of chemoradiotherapy-induced diarrhea in people with abdominal and pelvic cancer: a systematic review and meta-analysis[J]. Eur J Clin Nutr, 2016, 70(11): 1246-1253. DOI: 10.1038/ejcn.2016.102.
pmid: 27329608 |
[49] | Liu MM, Li ST, Shu Y, et al. Probiotics for prevention of radiation-induced diarrhea: a meta-analysis of randomized controlled trials[J]. PLoS One, 2017, 12(6): e0178870. DOI: 10.1371/journal.pone.0178870. |
[50] |
Guo YX, Chen Y, Liu XQ, et al. Targeted cancer immunotherapy with genetically engineered oncolytic salmonella typhimurium[J]. Cancer Lett, 2020, 469: 102-110. DOI: 10.1016/j.canlet.2019.10.033.
pmid: 31666180 |
[51] | Lee CH. Employment of salmonella in cancer gene therapy[J]. Methods Mol Biol, 2016, 1409: 79-83. DOI: 10.1007/978-1-4939-3515-4_8. |
[52] | Liu L, Zhang J, Gu M, et al. Antitumor effect of cycle inhibiting factor expression in colon cancer via salmonella VNP20009[J]. Anticancer Agents Med Chem, 2020, 20(14): 1722-1727. DOI: 10.2174/1871520620666200423080622. |
[53] | Liu ZC, Li X, Lu ZK, et al. Repurposing the pentameric B-subunit of shiga toxin for Gb3-targeted immunotherapy of colorectal cancer by rhamnose conjugation[J]. J Pharm Sci, 2022, 111(10): 2719-2729. DOI: 10.1016/j.xphs.2022.07.017. |
[54] | Aguiar SLF, Miranda MCG, Guimarães MAF, et al. High-salt diet induces IL-17-dependent gut inflammation and exacerbates colitis in mice[J]. Front Immunol, 2018, 8: 1969. DOI: 10.3389/fimmu.2017.01969. |
[55] |
Housseau F, Wu SG, Wick EC, et al. Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis[J]. Cancer Res, 2016, 76(8): 2115-2124. DOI: 10.1158/0008-5472.Can-15-0749.
pmid: 26880802 |
[56] | Hwang S, Yi HC, Hwang S, et al. Dietary salt administration decreases enterotoxigenic bacteroides fragilis (ETBF)-promoted tumorigenesis via inhibition of colonic inflammation[J]. Int J Mol Sci, 2020, 21(21): 8034. DOI: 10.3390/ijms21218034. |
[57] | Li S, Liu JY, Zheng XJ, et al. Tumorigenic bacteria in colorectal cancer: mechanisms and treatments[J]. Cancer Biol Med, 2021, 19(2): 147-162. DOI: 10.20892/j.issn.2095-3941.2020.0651. |
[58] |
Blaser MJ. Antibiotic use and its consequences for the normal microbiome[J]. Science, 2016, 352(6285): 544-545. DOI: 10.1126/science.aad9358.
pmid: 27126037 |
[59] |
Boursi B, Haynes K, Mamtani R, et al. Impact of antibiotic exposure on the risk of colorectal cancer[J]. Pharmacoepidemiol Drug Saf, 2015, 24(5): 534-542. DOI: 10.1002/pds.3765.
pmid: 25808540 |
[60] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. DOI: 10.1126/science.aan3706.
pmid: 29097494 |
[61] | Huang JY, Zheng X, Kang WY, et al. Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer[J]. Front Immunol, 2022, 13: 874922. DOI: 10.3389/fimmu.2022.874922. |
[62] | DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E. coli Bacteremia transmitted by fecal microbiota transplant[J]. N Engl J Med, 2019, 381(21): 2043-2050. DOI: 10.1056/NEJMoa1910437. |
[1] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[2] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[3] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[4] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[5] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[6] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[7] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[8] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[9] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵. 寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[10] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[11] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[12] | 李济时, 陆钊群, 刘俊茹, 吕建勋, 陈霜, 沈琳, 徐志渊, 吴平安. 新辅助放疗联合部分喉切除术治疗喉滑膜肉瘤1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(2): 123-125. |
[13] | 金旭东, 陈忠坚, 毛伟敏. MTAP基因在恶性间皮瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 99-104. |
[14] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管癌放射治疗指南(2023年版)[J]. 国际肿瘤学杂志, 2024, 51(1): 1-20. |
[15] | 高新雨, 李振江, 孙洪福, 韩丹, 赵倩, 刘成新, 黄伟. 基于MR加速器的MR引导放疗在食管癌患者中的临床应用[J]. 国际肿瘤学杂志, 2024, 51(1): 37-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||