国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (2): 99-104.doi: 10.3760/cma.j.cn371439-20231109-00014
收稿日期:
2023-11-09
修回日期:
2024-01-03
出版日期:
2024-02-08
发布日期:
2024-04-03
通讯作者:
毛伟敏,Email:基金资助:
Jin Xudong1,2, Chen Zhongjian3, Mao Weimin2,4()
Received:
2023-11-09
Revised:
2024-01-03
Online:
2024-02-08
Published:
2024-04-03
Contact:
Mao Weimin,Email:Supported by:
摘要:
甲硫腺苷磷酸化酶(MTAP)是甲硫氨酸和嘌呤补救合成途径中的一个关键酶,与多胺代谢、腺嘌呤代谢和甲硫氨酸代谢密切相关。MTAP基因在恶性间皮瘤(MM)中频繁发生缺失,在恶性间皮瘤诊断与鉴别诊断中具有重要价值。同时,由于MTAP缺失引起代谢重编程,为MM带来了新的治疗策略。除此之外,MTAP基因也与MM的预后具有一定相关性,因此MTAP或可作为MM诊断、治疗和预后相关的重要生物标志物。
金旭东, 陈忠坚, 毛伟敏. MTAP基因在恶性间皮瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 99-104.
Jin Xudong, Chen Zhongjian, Mao Weimin. Research progress on the role of MTAP in malignant mesothelioma[J]. Journal of International Oncology, 2024, 51(2): 99-104.
表1
MTAP在MM鉴别诊断中的作用价值"
鉴别诊断 | 标志物 | 敏感性(%) | 特异性(%) | 参考文献 |
---|---|---|---|---|
MPM与RMH(组织学样本) | MTAP IHC | 45.1~47.4 | 100 | [ |
MTAP+BAP1 IHC | 73.7~76.5 | 100 | [ | |
MTAP+BAP1+EZH2 IHC | 86.8 | 100 | [ | |
MPM与RMH(细胞学样本) | MTAP IHC | 42.2~52.8 | 100 | [ |
MTAP+BAP1 IHC | 77.8~83.3 | 100 | [ | |
DMPM与RMH(组织学样本) | MTAP IHC | 33.3 | 100 | [ |
MTAP+BAP1 IHC | 83.3 | 100 | [ | |
MTAP+BAP1+5-hmC IHC | 90.0 | 100 | [ | |
DMPM与RMH(细胞学样本) | MTAP IHC | 40.6 | 100 | [ |
MTAP+BAP1 IHC | 78.1 | 100 | [ | |
MTAP+BAP1+5-hmC IHC | 84.4 | 100 | [ | |
肉瘤样MPM与纤维素性胸膜炎(组织学样本) | MTAP IHC | 80.0 | 100 | [ |
MTAP+BAP1 IHC | 90.0 | 100 | [ |
[1] | 中国医师协会肿瘤多学科诊疗专业委员会. 中国恶性胸膜间皮瘤临床诊疗指南(2021版)[J]. 中华肿瘤杂志, 2021, 43(4): 383-394. DOI: 10.3760/cma.j.cn112152-20210313-00225. |
[2] | Viscardi G, Di Liello R, Morgillo F. How Ⅰ treat malignant pleural mesothelioma[J]. ESMO Open, 2020, 4(Suppl 2): e000669. DOI: 10.1136/esmoopen-2019-000669. |
[3] |
Carbone M, Ly BH, Dodson RF, et al. Malignant mesothelioma: facts, myths, and hypotheses[J]. J Cell Physiol, 2012, 227(1): 44-58. DOI: 10.1002/jcp.22724.
pmid: 21412769 |
[4] |
Mossman BT, Shukla A, Heintz NH, et al. New insights into understanding the mechanisms, pathogenesis, and management of malignant mesotheliomas[J]. Am J Pathol, 2013, 182(4): 1065-1077. DOI: 10.1016/j.ajpath.2012.12.028.
pmid: 23395095 |
[5] |
Mutti L, Peikert T, Robinson BWS, et al. Scientific advances and new frontiers in mesothelioma therapeutics[J]. J Thorac Oncol, 2018, 13(9): 1269-1283. DOI: 10.1016/j.jtho.2018.06.011.
pmid: 29966799 |
[6] |
Tunesi S, Ferrante D, Mirabelli D, et al. Gene-asbestos interaction in malignant pleural mesothelioma susceptibility[J]. Carcinogenesis, 2015, 36(10): 1129-1135. DOI: 10.1093/carcin/bgv097.
pmid: 26139392 |
[7] | Matullo G, Guarrera S, Betti M, et al. Genetic variants associated with increased risk of malignant pleural mesothelioma: a genome-wide association study[J]. PLoS One, 2013, 8(4): e61253. DOI: 10.1371/journal.pone.0061253. |
[8] |
Xu J, Kadariya Y, Cheung M, et al. Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma[J]. Cancer Res, 2014, 74(16): 4388-4397. DOI: 10.1158/0008-5472.CAN-14-1328.
pmid: 24928783 |
[9] |
Franko A, Kotnik N, Goricar K, et al. The influence of genetic variability on the risk of developing malignant mesothelioma[J]. Radiol Oncol, 2018, 52(1): 105-111. DOI: 10.2478/raon-2018-0004.
pmid: 29520212 |
[10] | Bononi A, Goto K, Ak G, et al. Heterozygous germline BLM mutations increase susceptibility to asbestos and mesothelioma[J]. Proc Natl Acad Sci U S A, 2020, 117(52): 33466-33473. DOI: 10.1073/pnas.2019652117. |
[11] | Urso L, Cavallari I, Sharova E, et al. Metabolic rewiring and redox alterations in malignant pleural mesothelioma[J]. Br J Cancer, 2020, 122(1): 52-61. DOI: 10.1038/s41416-019-0661-9. |
[12] | 毛伟敏, 陆舜, 王俊, 等. 恶性胸膜间皮瘤(MPM)诊治共识(2022, 杭州)[J]. 中国肿瘤, 2022, 31(12): 941-951. DOI: 10.11735/j.issn.1004-0242.2022.12.A002. |
[13] | Chapel DB, Schulte JJ, Berg K, et al. MTAP immunohistochemistry is an accurate and reproducible surrogate for CDKN2A fluorescence in situ hybridization in diagnosis of malignant pleural mesothelioma[J]. Mod Pathol, 2020, 33(2): 245-254. DOI: 10.1038/s41379-019-0310-0. |
[14] | Cheng YY, Yuen ML, Rath EM, et al. CDKN2A and MTAP are useful biomarkers detectable by droplet digital PCR in malignant pleural mesothelioma: a potential alternative method in diagnosis compared to fluorescence in situ hybridisation[J]. Front Oncol, 2020, 10: 579327. DOI: 10.3389/fonc.2020.579327. |
[15] |
Barbarino M, Cesari D, Bottaro M, et al. PRMT5 silencing selectively affects MTAP-deleted mesothelioma: in vitro evidence of a novel promising approach[J]. J Cell Mol Med, 2020, 24(10): 5565-5577. DOI: 10.1111/jcmm.15213.
pmid: 32301278 |
[16] |
Han G, Yang G, Hao D, et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy[J]. Nat Commun, 2021, 12(1): 5606. DOI: 10.1038/s41467-021-25894-9.
pmid: 34556668 |
[17] | He HL, Lee YE, Shiue YL, et al. Characterization and prognostic significance of methylthioadenosine phosphorylase deficiency in nasopharyngeal carcinoma[J]. Medicine (Baltimore), 2015, 94(49): e2271. DOI: 10.1097/MD.0000000000002271. |
[18] | Amano Y, Matsubara D, Kihara A, et al. Expression and localisation of methylthioadenosine phosphorylase (MTAP) in oral squamous cell carcinoma and their significance in epithelial-to-mesenchymal transition[J]. Pathology, 2022, 54(3): 294-301. DOI: 10.1016/j.pathol.2021.05.101. |
[19] |
Bertino JR, Waud WR, Parker WB, et al. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies[J]. Cancer Biol Ther, 2011, 11(7): 627-632. DOI: 10.4161/cbt.11.7.14948.
pmid: 21301207 |
[20] |
Kadariya Y, Yin B, Tang B, et al. Mice heterozygous for germ-line mutations in methylthioadenosine phosphorylase (MTAP) die prematurely of T-cell lymphoma[J]. Cancer Res, 2009, 69(14): 5961-5969. DOI: 10.1158/0008-5472.CAN-09-0145.
pmid: 19567676 |
[21] |
Schmid M, Malicki D, Nobori T, et al. Homozygous deletions of methylthioadenosine phosphorylase (MTAP) are more frequent than p16INK4A (CDKN2) homozygous deletions in primary non-small cell lung cancers (NSCLC)[J]. Oncogene, 1998, 17(20): 2669-2675. DOI: 10.1038/sj.onc.1202205.
pmid: 9840931 |
[22] |
Christopher SA, Diegelman P, Porter CW, et al. Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line[J]. Cancer Res, 2002, 62(22): 6639-6644.
pmid: 12438261 |
[23] |
Kalev P, Hyer ML, Gross S, et al. MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage[J]. Cancer Cell, 2021, 39(2): 209-224.e11. DOI: 10.1016/j.ccell.2020.12.010.
pmid: 33450196 |
[24] |
Illei PB, Rusch VW, Zakowski MF, et al. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas[J]. Clin Cancer Res, 2003, 9(6): 2108-2113.
pmid: 12796375 |
[25] |
Patro CPK, Biswas N, Pingle SC, et al. MTAP loss: a possible therapeutic approach for glioblastoma[J]. J Transl Med, 2022, 20(1): 620. DOI: 10.1186/s12967-022-03823-8.
pmid: 36572880 |
[26] | 赵祎, 王萌, 杨洋. 肿瘤中甲硫氨酸代谢及其相关基因的表达调控[J]. 中国生物化学与分子生物学报, 2022, 38(7): 849-857. DOI: 10.13865/j.cnki.cjbmb.2022.01.1447. |
[27] | 余英豪, 刘伟. 恶性间皮瘤的免疫组化诊断[J]. 诊断病理学杂志, 2014, 21(5): 257-259. DOI: 10.3969/j.issn.1007-8096.2014.05.001. |
[28] |
Berg KB, Dacic S, Miller C, et al. Utility of methylthioadenosine phosphorylase compared with BAP1 immunohistochemistry, and CDKN2A and NF2 fluorescence in situ hybridization in separating reactive mesothelial proliferations from epithelioid malignant mesotheliomas[J]. Arch Pathol Lab Med, 2018, 142(12): 1549-1553. DOI: 10.5858/arpa.2018-0273-OA.
pmid: 30059257 |
[29] |
Hida T, Hamasaki M, Matsumoto S, et al. Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: comparison with 9p21 FISH and BAP1 immunohistochemistry[J]. Lung Cancer, 2017, 104: 98-105. DOI: 10.1016/j.lungcan.2016.12.017.
pmid: 28213009 |
[30] | Chapel DB, Schulte JJ, Husain AN, et al. Application of immunohistochemistry in diagnosis and management of malignant mesothelioma[J]. Transl Lung Cancer Res, 2020, 9(Suppl 1): S3-S27. DOI: 10.21037/tlcr.2019.11.29. |
[31] | Chapel DB, Husain AN, Krausz T. Immunohistochemical evaluation of nuclear 5-hydroxymethylcytosine (5-hmC) accurately distinguishes malignant pleural mesothelioma from benign mesothelial proliferations[J]. Mod Pathol, 2019, 32(3): 376-386. DOI: 10.1038/s41379-018-0159-7. |
[32] |
Shinozaki‐Ushiku A, Ushiku T, Morita S, et al. Diagnostic utility of BAP1 and EZH2 expression in malignant mesothelioma[J]. Histopathology, 2017, 70(5): 722-733. DOI: 10.1111/his.13123.
pmid: 27859460 |
[33] | Alsugair Z, Kepenekian V, Fenouil T, et al. 5-hmC loss is another useful tool in addition to BAP1 and MTAP immunostains to distinguish diffuse malignant peritoneal mesothelioma from reactive mesothelial hyperplasia in peritoneal cytology cell-blocks and biopsies[J]. Virchows Arch, 2022, 481(1): 23-29. DOI: 10.1007/s00428-022-03336-1. |
[34] |
Yoshimura M, Kinoshita Y, Hamasaki M, et al. Highly expressed EZH2 in combination with BAP1 and MTAP loss, as detected by immunohistochemistry, is useful for differentiating malignant pleural mesothelioma from reactive mesothelial hyperplasia[J]. Lung Cancer, 2019, 130: 187-193. DOI: 10.1016/j.lungcan.2019.02.004.
pmid: 30885343 |
[35] |
Kinoshita Y, Hida T, Hamasaki M, et al. A combination of MTAP and BAP1 immunohistochemistry in pleural effusion cytology for the diagnosis of mesothelioma[J]. Cancer Cytopathol, 2018, 126(1): 54-63. DOI: 10.1002/cncy.21928.
pmid: 29053210 |
[36] |
Kinoshita Y, Hamasaki M, Matsumoto S, et al. Fluorescence in situ hybridization detection of chromosome 22 monosomy in pleural effusion cytology for the diagnosis of mesothelioma[J]. Cancer Cytopathol, 2021, 129(7): 526-536. DOI: 10.1002/cncy.22409.
pmid: 33493384 |
[37] |
Wu D, Hiroshima K, Matsumoto S, et al. Diagnostic usefulness of p16/CDKN2A FISH in distinguishing between sarcomatoid mesothelioma and fibrous pleuritis[J]. Am J Clin Pathol, 2013, 139(1): 39-46. DOI: 10.1309/AJCPT94JVWIHBKRD.
pmid: 23270897 |
[38] |
Kinoshita Y, Hamasaki M, Yoshimura M, et al. A combination of MTAP and BAP1 immunohistochemistry is effective for distingui-shing sarcomatoid mesothelioma from fibrous pleuritis[J]. Lung Cancer, 2018, 125: 198-204. DOI: 10.1016/j.lungcan.2018.09.019.
pmid: 30429020 |
[39] | Sa-Ngiamwibool P, Hamasaki M, Kinoshita Y, et al. Challenges and limitation of MTAP immunohistochemistry in diagnosing desmoplastic mesothelioma/sarcomatoid pleural mesothelioma with desmoplastic features[J]. Ann Diagn Pathol, 2022, 60: 152004. DOI: 10.1016/j.anndiagpath.2022.152004. |
[40] |
Marjon K, Cameron MJ, Quang P, et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis[J]. Cell Rep, 2016, 15(3): 574-587. DOI: 10.1016/j.celrep.2016.03.043.
pmid: 27068473 |
[41] | Lubin M, Lubin A. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy[J]. PLoS One, 2009, 4(5): e5735. DOI: 10.1371/journal.pone.0005735. |
[42] | Fan N, Zhang Y, Zou S. Methylthioadenosine phosphorylase deficiency in tumors: a compelling therapeutic target[J]. Front Cell Dev Biol, 2023, 11: 1173356. DOI: 10.3389/fcell.2023.1173356. |
[43] | Dulloo S, Bzura A, Fennell DA. Precision therapy for mesothelioma: feasibility and new opportunities[J]. Cancers (Basel), 2021, 13(10): 2347. DOI: 10.3390/cancers13102347. |
[44] |
Kryukov GV, Wilson FH, Ruth JR, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells[J]. Science, 2016, 351(6278): 1214-1218. DOI: 10.1126/science.aad5214.
pmid: 26912360 |
[45] |
Mavrakis KJ, McDonald ER 3rd, Schlabach MR, et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5[J]. Science, 2016, 351(6278): 1208-1213. DOI: 10.1126/science.aad5944.
pmid: 26912361 |
[46] |
Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond[J]. Cell Mol Life Sci, 2015, 72(11): 2041-2059. DOI: 10.1007/s00018-015-1847-9.
pmid: 25662273 |
[47] | 王鹏飞, 陈奕. 甲硫氨酸腺苷转移酶2A在肿瘤发生中的作用及其抑制剂研发现状[J]. 药学进展, 2022, 46(12): 884-897. DOI: 10.20053/j.issn1001-5094.2022.12.002. |
[48] | Krasinskas AM, Bartlett DL, Cieply K, et al. CDKN2A and MTAP deletions in peritoneal mesotheliomas are correlated with loss of p16 protein expression and poor survival[J]. Mod Pathol, 2010, 23(4): 531-538. DOI: 10.1038/modpathol.2009.186. |
[49] | Belderbos RA, Maat APWM, Baart SJ, et al. Ki67 (MIB-1) as a prognostic marker for clinical decision making before extended pleurectomy decortication in malignant pleural mesothelioma[J]. JTO Clin Res Rep, 2021, 2(4): 100155. DOI: 10.1016/j.jtocrr.2021.100155. |
[50] | Zhu M, Lu Z, Guo H, et al. Diagnostic value of combination of biomarkers for malignant pleural mesothelioma: a systematic review and meta-analysis[J]. Front Oncol, 2023, 13: 1136049. DOI: 10.3389/fonc.2023.1136049. |
[51] |
Zhang Y, Zhang TT, Gao L, et al. Downregulation of MTAP promotes tumor growth and metastasis by regulating ODC activity in breast cancer[J]. Int J Biol Sci, 2022, 18(7): 3034-3047. DOI: 10.7150/ijbs.67149.
pmid: 35541910 |
[52] | Chang WH, Chen YJ, Hsiao YJ, et al. Reduced symmetric dimethylation stabilizes vimentin and promotes metastasis in MTAP-deficient lung cancer[J]. EMBO Rep, 2022, 23(8): e54265. DOI: 10.15252/embr.202154265. |
[53] | Xu J, Chang WH, Fong LWR, et al. Targeting the insulin-like growth factor-1 receptor in MTAP-deficient renal cell carcinoma[J]. Signal Transduct Target Ther, 2019, 4: 2. DOI: 10.1038/s41392-019-0035-z. |
[54] |
Alhalabi O, Chen J, Zhang Y, et al. MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers[J]. Nat Commun, 2022, 13(1): 1797. DOI: 10.1038/s41467-022-29397-z.
pmid: 35379845 |
[55] |
Jing W, Zhu H, Liu W, et al. MTAP-deficiency could predict better treatment response in advanced lung adenocarcinoma patients initially treated with pemetrexed-platinum chemotherapy and bevacizumab[J]. Sci Rep, 2020, 10(1): 843. DOI: 10.1038/s41598-020-57812-2.
pmid: 31965001 |
[56] | Chang WH, Hsu SW, Zhang J, et al. MTAP deficiency contributes to immune landscape remodelling and tumour evasion[J]. Immunology, 2023, 168(2): 331-345. DOI: 10.1111/imm.13587. |
[57] |
Hansen LJ, Yang R, Roso K, et al. MTAP loss correlates with an immunosuppressive profile in GBM and its substrate MTA stimulates alternative macrophage polarization[J]. Sci Rep, 2022, 12(1): 4183. DOI: 10.1038/s41598-022-07697-0.
pmid: 35264604 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[4] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[5] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[6] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[7] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[8] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[9] | 陈琦, 徐晨阳, 王寅, 雷大鹏. 高光谱成像在头颈部肿瘤诊疗中的应用现状[J]. 国际肿瘤学杂志, 2024, 51(5): 298-302. |
[10] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞. 原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[11] | 万芳, 杨钢, 李睿, 万启晶. 食管癌患者血清miR-497、miR-383水平及临床意义[J]. 国际肿瘤学杂志, 2024, 51(4): 204-209. |
[12] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[13] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[14] | 张丽丽, 谭茹, 房雪利, 杨宇, 桑铮, 李宝生. 乳腺导管原位癌影像学诊断、病理学升级及影像学技术进展[J]. 国际肿瘤学杂志, 2024, 51(3): 166-169. |
[15] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||