国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (3): 143-150.doi: 10.3760/cma.j.cn371439-20231109-00023

• 论著 • 上一篇    下一篇

基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建

孙维蔚1, 姚学敏1, 王鹏健1, 王静2, 贾敬好1()   

  1. 1华北理工大学附属医院肿瘤放化疗二科,唐山 063000
    2华北理工大学附属医院肿瘤放化疗四科,唐山 063000
  • 收稿日期:2023-11-09 修回日期:2023-12-14 出版日期:2024-03-08 发布日期:2024-04-10
  • 通讯作者: 贾敬好,Email: jiajinghao@ncst.edu.cn
  • 基金资助:
    河北省医学科学研究课题(20191595)

Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes

Sun Weiwei1, Yao Xuemin1, Wang Pengjian1, Wang Jing2, Jia Jinghao1()   

  1. 1Second Department of Radiation and Medical Oncology, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
    2Fourth Department of Radiation and Medical Oncology, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
  • Received:2023-11-09 Revised:2023-12-14 Online:2024-03-08 Published:2024-04-10
  • Contact: Jia Jinghao, Email: jiajinghao@ncst.edu.cn
  • Supported by:
    Hebei Province Medical Science Research Project(20191595)

摘要:

目的 基于血液学指标探讨接受免疫治疗晚期非小细胞肺癌(NSCLC)患者预后的影响因素,以此构建列线图预测模型并进行评估。方法 回顾性分析2018年1月至2020年6月在华北理工大学附属医院、唐山市人民医院接受程序性死亡受体1抑制剂单药或联合方案治疗的80例晚期NSCLC患者的临床资料。分别收集基线期、最佳缓解期和疾病进展(PD)期的血液学指标,采用Cox比例风险回归模型分析患者预后的独立影响因素。根据多因素分析结果构建列线图预测模型,并采用受试者操作特征曲线、一致性指数(C-index)和校准曲线评估模型的预测效能。结果 截至随访截止日期,80例患者中63例PD,患者中位总生存期(OS)为16.9个月。单因素分析显示,年龄(HR=2.09,95%CI为1.17~3.74,P=0.013),治疗线数(HR=2.23,95%CI为1.21~4.12,P=0.010),基线期的淋巴细胞与单核细胞比值(LMR)(HR=0.75,95%CI为0.57~0.97,P=0.028),最佳缓解期的D-二聚体(HR=1.00,95%CI为1.00~1.00,P=0.002)、乳酸脱氢酶(LDH)(HR=1.01,95%CI为1.00~1.01,P=0.006),PD期的血红蛋白(HR=0.97,95%CI为0.96~0.99,P<0.001)、D-二聚体(HR=1.00,95%CI为1.00~1.00,P=0.002)、C-反应蛋白(HR=1.01,95%CI为1.00~1.01,P=0.011)、白蛋白(ALB)(HR=0.91,95%CI为0.87~0.96,P=0.001)、中性粒细胞与淋巴细胞比值(NLR)(HR=1.16,95%CI为1.05~1.27,P=0.002)和LMR(HR=0.62,95%CI为0.42~0.90,P=0.012)均是接受免疫治疗晚期NSCLC患者预后的影响因素。采用最小绝对收缩和选择算子回归对单因素分析中P<0.10的变量进行筛选,得到9个可能的影响因素,分别为年龄,最佳缓解期的纤维蛋白原、LDH,PD期的血红蛋白、D-二聚体、C-反应蛋白、LDH、ALB和LMR。将上述变量进行多因素分析显示,年龄(HR=0.91,95%CI为0.86~0.97,P=0.004)、PD期的LDH(HR=1.01,95%CI为1.00~1.01,P=0.013)和ALB(HR=0.82,95%CI为0.67~0.99,P=0.041)均是接受免疫治疗晚期NSCLC患者预后的独立影响因素。基于上述指标构建的列线图模型预测患者1、2年OS率的曲线下面积分别为0.77(95%CI为0.65~0.89)、0.75(95%CI为0.66~0.88),C-index为0.71(95%CI为0.64~0.78),校准曲线显示预测概率与实际发生概率一致性较好。低风险组患者(n=40)的中位OS为29.9个月(95%CI为22.5个月~NA),明显优于高风险组(n=40)[13.4个月(95%CI为11.4~23.5个月),χ2=11.30,P<0.001]。结论 年龄、PD期的LDH和ALB均是接受免疫治疗晚期NSCLC患者预后的独立影响因素,基于上述指标构建的列线图模型对预测接受免疫治疗晚期NSCLC患者1、2年OS率具有良好的区分度和校准度。

关键词: 癌, 非小细胞肺, 免疫疗法, 预后, 列线图

Abstract:

Objective To explore influencing factors affecting the prognosis of patients with advanced non-small cell lung cancer (NSCLC) receiving immunotherapy based on hematologic indexes, thus to construct and evaluate a nomogram prediction model. Methods The clinical data of 80 patients with advanced NSCLC treated with programmed death-1 inhibitor monotherapy or combination regimen from January 2018 to June 2020 at the Affiliated Hospital of North China University of Science and Technology and Tangshan People's Hospital were retrospectively analyzed. Hematologic indexes at the baseline, the optimal remission and the progressive disease (PD) were collected separately, and independent influencing factors for patient prognosis were analyzed using Cox proportional hazards regression model. A nomogram prediction model was constructed based on the results of the multifactorial analysis, and the predictive performance of the model was evaluated by receiver operating characteristic (ROC) curve, concordance index (C-index) and calibration curves. Results As of the follow-up cut-off date, of the 80 patients, 63 had PD, with a median overall survival (OS) of 16.9 months. Univariate analysis showed that, age (HR=2.09, 95%CI: 1.17-3.74, P=0.013), number of treatment lines (HR=2.23, 95%CI: 1.21-4.12, P=0.010), lymphocyte to monocyte ratio (LMR) at the baseline (HR=0.75, 95%CI: 0.57-0.97, P=0.028), D-dimer (HR=1.00, 95%CI: 1.00-1.00, P=0.002) and lactate dehydrogenase (LDH) (HR=1.01, 95%CI: 1.00-1.01, P=0.006) at the optimal remission, haemoglobin (HR=0.97, 95%CI: 0.96-0.99, P<0.001), D-dimer (HR=1.00, 95%CI: 1.00-1.00, P=0.002), C-reactive protein (HR=1.01, 95%CI: 1.00-1.01, P=0.011), albumin (ALB) (HR=0.91, 95%CI: 0.87-0.96, P=0.001), neutrophil to lymphocyte ratio (NLR) (HR=1.16, 95%CI: 1.05-1.27, P=0.002) and LMR (HR=0.62, 95%CI: 0.42-0.90, P=0.012) at the PD were all influencing factors for the prognosis of advanced NSCLC patients receiving immunotherapy. Least absolute shrinkage and selection operator regression were used to screen the variables for P<0.10 in the univariate analysis, and nine possible influencing factors were obtained, which were age, fibrinogen and LDH at the optimal remission, haemoglobin, D-dimer, C-reactive protein, LDH, ALB and LMR at the PD. Multivariate analysis of the above variables showed that, age (HR=0.91, 95%CI: 0.86-0.97, P=0.004), LDH (HR=1.01, 95%CI: 1.00-1.01, P=0.013) and ALB (HR=0.82, 95%CI: 0.67-0.99, P=0.041) at the PD were independent influencing factors for the prognosis of patients with advanced NSCLC who received immunotherapy. The area under curve of the nomogram predicting model based on the above indexes, 1- and 2-year OS rates of patients were 0.77 (95%CI: 0.65-0.89) and 0.75 (95%CI: 0.66-0.88), respectively, and C-index was 0.71 (95%CI: 0.64-0.78), the calibration curves showed good consistency between predicted and actual probability of occurrence. Patients in the low-risk group (n=40) had a median OS of 29.9 months (95%CI: 22.5 months-NA), which was significantly better than that of the high-risk group (n=40) [13.4 months (95%CI: 11.4-23.5 months), χ2=11.30, P<0.001]. Conclusion Age, LDH and ALB at the PD are independent influencing factors affecting the prognosis of patients with advanced NSCLC receiving immunotherapy, and the nomogram model constructed based on the above indexes has good differentiation and calibration for predicting 1- and 2-year OS rates in advanced NSCLC patients receiving immunotherapy.

Key words: Carcinoma, non-small-cell lung, Immunotherapy, Prognosis, Nomogram