国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (6): 370-375.doi: 10.3760/cma.j.cn371439-20231213-00064
收稿日期:
2023-12-13
修回日期:
2024-01-16
出版日期:
2024-06-08
发布日期:
2024-06-28
通讯作者:
褚衍六,Email: 基金资助:
Received:
2023-12-13
Revised:
2024-01-16
Online:
2024-06-08
Published:
2024-06-28
Contact:
Chu Yanliu, Email: Supported by:
摘要:
结直肠癌风险评估模型是结直肠癌筛查工作中甄别结直肠癌高危人群的重要方法。近年来,粪便免疫化学试验(FIT)和肠道菌群成为研究的热点,国内外学者在FIT和肠道菌群的基础上建立了多种结直肠癌风险评估模型,其中包括基于FIT的结直肠癌风险评估模型、基于肠道菌群的结直肠癌风险评估模型、基于FIT和肠道菌群的结直肠癌风险评估模型,上述评估模型均有助于结直肠癌筛查与早诊早治。在现有的评估模型中,基于FIT和肠道菌群的评估模型对结直肠癌展现出较高的诊断效能,有望成为具有价值的非侵入性结直肠癌筛查方式。
张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375.
Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota[J]. Journal of International Oncology, 2024, 51(6): 370-375.
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. |
[2] |
Imperiale TF, Gruber RN, Stump TE, et al. Performance characteri-stics of fecal immunochemical tests for colorectal cancer and advanced adenomatous polyps: a systematic review and meta-analysis[J]. Ann Intern Med, 2019, 170(5): 319-329. DOI: 10.7326/M18-2390.
pmid: 30802902 |
[3] |
Shah MS, DeSantis TZ, Weinmaier T, et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer[J]. Gut, 2018, 67(5): 882-891. DOI: 10.1136/gutjnl-2016-313189.
pmid: 28341746 |
[4] | van de Veerdonk W, Hoeck S, Peeters M, et al. Towards risk-stratified colorectal cancer screening. Adding risk factors to the fecal immunochemical test: evidence, evolution and expectations[J]. Prev Med (Baltim), 2019, 126: 105746. DOI: 10.1016/j.ypmed.2019.06.004. |
[5] |
Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(11): 690-704. DOI: 10.1038/s41575-019-0209-8.
pmid: 31554963 |
[6] | Zwezerijnen-Jiwa FH, Sivov H, Paizs P, et al. A systematic review of microbiome-derived biomarkers for early colorectal cancer detection[J]. Neoplasia, 2023, 36: 100868. DOI: 10.1016/j.neo.2022.100868. |
[7] | Chiu HM, Ching JY, Wu KC, et al. A risk-scoring system combined with a fecal immunochemical test is effective in screening high-risk subjects for early colonoscopy to detect advanced colorectal neoplasms[J]. Gastroenterology, 2016, 150(3): 617-625.e3. DOI: 10.1053/j.gastro.2015.11.042. |
[8] | Chen H, Shi J, Lu M, et al. Comparison of colonoscopy, fecal immunochemical test, and risk-adapted approach in a colorectal cancer screening trial (TARGET-C)[J]. Clin Gastroenterol Hepatol, 2023, 21(3): 808-818. DOI: 10.1016/j.cgh.2022.08.003. |
[9] |
Chen H, Lu M, Liu C, et al. Comparative evaluation of participation and diagnostic yield of colonoscopy vs fecal immunochemical test vs risk-adapted screening in colorectal cancer screening: interim analysis of a multicenter randomized controlled trial (TARGET-C)[J]. Am J Gastroenterol, 2020, 115(8): 1264-1274. DOI: 10.14309/ajg.0000000000000624.
pmid: 32282342 |
[10] | He XX, Yuan SY, Li WB, et al. Improvement of asia-pacific colorectal screening score and evaluation of its use combined with fecal immunochemical test[J]. BMC Gastroenterol, 2019, 19(1): 226. DOI: 10.1186/s12876-019-1146-2. |
[11] |
Park CH, Jung YS, Kim NH, et al. Usefulness of risk stratification models for colorectal cancer based on fecal hemoglobin concentration and clinical risk factors[J]. Gastrointest Endosc, 2019, 89(6): 1204-1211.e1. DOI: 10.1016/j.gie.2019.02.023.
pmid: 30817918 |
[12] | Zhao S, Wang S, Pan P, et al. FIT-based risk-stratification model effectively screens colorectal neoplasia and early-onset colorectal cancer in Chinese population: a nationwide multicenter prospective study[J]. J Hematol Oncol, 2022, 15(1): 162. DOI: 10.1186/s13045-022-01378-1. |
[13] | Lang D, Ciombor KK. Diagnosis and management of rectal cancer in patients younger than 50 years: rising global incidence and unique challenges[J]. J Natl Compr Canc Netw, 2022, 20(10): 1169-1175. DOI: 10.6004/jnccn.2022.7056. |
[14] | Liu PH, Wu K, Ng K, et al. Association of obesity with risk of early-onset colorectal cancer among women[J]. JAMA Oncol, 2019, 5(1): 37-44. DOI: 10.1001/jamaoncol.2018.4280. |
[15] | Khoa Ta HD, Nguyen NN, Ho DKN, et al. Association of diabetes mellitus with early-onset colorectal cancer: a systematic review and meta-analysis of 19 studies including 10 million individuals and 30,000 events[J]. Diabetes Metab Syndr, 2023, 17(8): 102828. DOI: 10.1016/j.dsx.2023.102828. |
[16] | Yeh JH, Lin CW, Wang WL, et al. Positive fecal immunochemical test strongly predicts adenomas in younger adults with fatty liver and metabolic syndrome[J]. Clin Transl Gastroenterol, 2021, 12(2): e00305. DOI: 10.14309/ctg.0000000000000305. |
[17] |
Cubiella J, Digby J, Rodríguez-Alonso L, et al. The fecal hemoglobin concentration, age and sex test score: development and external validation of a simple prediction tool for colorectal cancer detection in symptomatic patients[J]. Int J Cancer, 2017, 140(10): 2201-2211. DOI: 10.1002/ijc.30639.
pmid: 28187494 |
[18] |
Cubiella J, Vega P, Salve M, et al. Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients[J]. BMC Med, 2016, 14(1): 128. DOI: 10.1186/s12916-016-0668-5.
pmid: 27580745 |
[19] | Herrero JM, Vega P, Salve M, et al. Symptom or faecal immunochemical test based referral criteria for colorectal cancer detection in symptomatic patients: a diagnostic tests study[J]. BMC Gastroenterol, 2018, 18(1): 155. DOI: 10.1186/s12876-018-0887-7. |
[20] | Liang JQ, Li T, Nakatsu G, et al. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer[J]. Gut, 2020, 69(7): 1248-1257. DOI: 10.1136/gutjnl-2019-318532. |
[21] |
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer[J]. Clin Cancer Res, 2017, 23(8): 2061-2070. DOI: 10.1158/1078-0432.CCR-16-1599.
pmid: 27697996 |
[22] |
Si H, Yang Q, Hu H, et al. Colorectal cancer occurrence and treatment based on changes in intestinal flora[J]. Semin Cancer Biol, 2021, 70: 3-10. DOI: 10.1016/j.semcancer.2020.05.004.
pmid: 32404293 |
[23] | Liang JQ, Zeng Y, Kwok G, et al. Novel microbiome signatures for non-invasive diagnosis of adenoma recurrence after colonoscopic polypectomy[J]. Aliment Pharmacol Ther, 2022, 55(7): 847-855. DOI: 10.1111/apt.16799. |
[24] |
Wang Y, Zhang Y, Wang Z, et al. A clinical nomogram incorporating salivary Desulfovibrio desulfuricans level and oral hygiene index for predicting colorectal cancer[J]. Ann Transl Med, 2021, 9(9): 754. DOI: 10.21037/atm-20-8168.
pmid: 34268367 |
[25] |
Kushkevych I, Dordević D, Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development[J]. J Adv Res, 2021, 27: 71-78. DOI: 10.1016/j.jare.2020.03.007.
pmid: 33318867 |
[26] |
Nguyen LH, Ma W, Wang DD, et al. Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men[J]. Gastroenterology, 2020, 158(5): 1313-1325. DOI: 10.1053/j.gastro.2019.12.029.
pmid: 31972239 |
[27] |
Momen-Heravi F, Babic A, Tworoger SS, et al. Periodontal disease, tooth loss and colorectal cancer risk: results from the Nurses' Health Study[J]. Int J Cancer, 2017, 140(3): 646-652. DOI: 10. 1002/ijc.30486.
pmid: 27778343 |
[28] |
Dai Z, Coker OO, Nakatsu G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers[J]. Microbiome, 2018, 6(1): 70. DOI: 10.1186/s40168-018-0451-2.
pmid: 29642940 |
[29] | Löwenmark T, Löfgren-Burström A, Zingmark C, et al. Tumour colonisation of parvimonas micra is associated with decreased survival in colorectal cancer patients[J]. Cancers (Basel), 2022, 14(23): 5937. DOI: 10.3390/cancers14235937. |
[30] |
Coker OO, Liu C, Wu WKK, et al. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers[J]. Microbiome, 2022, 10(1): 35. DOI: 10.1186/s40168-021-01208-5.
pmid: 35189961 |
[31] | Dmitrieva-Posocco O, Wong AC, Lundgren P, et al. β-hydroxybutyrate suppresses colorectal cancer[J]. Nature, 2022, 605(7908): 160-165. DOI: 10.1038/s41586-022-04649-6. |
[32] | Choi BH, Coloff JL. The diverse functions of non-essential amino acids in cancer[J]. Cancers (Basel), 2019, 11(5): 675. DOI: 10.3390/cancers11050675. |
[33] |
Sullivan LB, Luengo A, Danai LV, et al. Aspartate is an endogenous metabolic limitation for tumour growth[J]. Nat Cell Biol, 2018, 20(7): 782-788. DOI: 10.1038/s41556-018-0125-0.
pmid: 29941931 |
[34] | Wong SH, Kwong TNY, Chow TC, et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia[J]. Gut, 2017, 66(8): 1441-1448. DOI: 10.1136/gutjnl-2016-312766. |
[35] | Liu K, Yang X, Zeng M, et al. The role of fecal Fusobacterium nucleatum and pks+ Escherichia coli as early diagnostic markers of colorectal cancer[J]. Dis Markers, 2021, 2021: 1171239. DOI: 10.1155/2021/1171239. |
[36] | Janney A, Powrie F, Mann EH. Host-microbiota maladaptation in colorectal cancer[J]. Nature, 2020, 585(7826): 509-517. DOI: 10.1038/s41586-020-2729-3. |
[37] | Xie YH, Gao QY, Cai GX, et al. Fecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studies[J]. EBioMedicine, 2017, 25: 32-40. DOI: 10.1016/j.ebiom.2017.10.005. |
[38] |
Liu H, Tian R, Wang H, et al. Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation[J]. J Transl Med, 2020, 18(1): 382. DOI: 10.1186/s12967-020-02539-x.
pmid: 33036625 |
[39] | Zhang Y, Lu M, Lu B, et al. Leveraging fecal microbial markers to improve the diagnostic accuracy of the fecal immunochemical test for advanced colorectal adenoma[J]. Clin Transl Gastroenterol, 2021, 12(8): e00389. DOI: 10.14309/ctg.0000000000000389. |
[40] |
Kwong TNY, Wang X, Nakatsu G, et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer[J]. Gastroenterology, 2018, 155(2): 383-390.e8. DOI: 10.1053/j.gastro.2018.04.028.
pmid: 29729257 |
[1] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[2] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[3] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[4] | 刘德宝, 孙子雯, 鲁守堂, 徐海东. ASB6在结直肠癌组织中的表达及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 470-474. |
[5] | 过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. |
[6] | 吕璐, 孙鹏飞. 肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[7] | 陈卓, 陶俊, 陈琳, 柯晶. 外周血miR-194联合粪便miR-143检测对结直肠癌临床筛查的价值[J]. 国际肿瘤学杂志, 2023, 50(5): 268-273. |
[8] | 石小琪, 汪红艳. 肠道菌群与放射性肠炎的相互作用及研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 244-247. |
[9] | 黄镇, 张蔡羽天, 柯少波, 石薇, 赵文思, 陈永顺. 结直肠癌患者术后预后模型的构建[J]. 国际肿瘤学杂志, 2023, 50(3): 157-163. |
[10] | 徐良富, 李袁飞. MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[11] | 刘玉杰, 赵志强, 王子琤. 早期结直肠癌患者外周血单个核细胞中TOP2A、ERBB2的水平及其诊断价值[J]. 国际肿瘤学杂志, 2023, 50(12): 717-722. |
[12] | 陶红, 殷红, 罗宏, 陶佳瑜. 靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[13] | 王熙, 吴川清. 结直肠癌多药耐药逆转的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 42-46. |
[14] | 高一钊, 刘洋, 刘秋龙, 邢金良. 循环游离核酸在结直肠癌临床诊疗中的应用[J]. 国际肿瘤学杂志, 2022, 49(9): 555-559. |
[15] | 何哲锋, 吴燚阳, 李振军, 应晓江. 炎性相关标志物对结直肠癌的预测价值[J]. 国际肿瘤学杂志, 2022, 49(9): 560-563. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||