国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (7): 432-436.doi: 10.3760/cma.j.cn371439-20230413-00083
收稿日期:
2023-04-13
修回日期:
2023-06-13
出版日期:
2023-07-08
发布日期:
2023-08-03
通讯作者:
吴俊华,Email: 基金资助:
Guo Ciliang1,2, Jiang Chunping1,2, Wu Junhua1,2()
Received:
2023-04-13
Revised:
2023-06-13
Online:
2023-07-08
Published:
2023-08-03
Contact:
Wu Junhua,Email: Supported by:
摘要:
免疫治疗在难治性肿瘤的临床实践中取得重大突破,但在临床应用中依然存在治疗结果的个体差异性和耐药性问题。肠道菌群是近年来逐渐受到重视的免疫调节因素,越来越多的研究关注到其对肿瘤免疫治疗效果的影响。以肠道菌群为靶点,提高肿瘤患者对免疫治疗的应答效果,具有潜在的临床应用价值。
过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436.
Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy[J]. Journal of International Oncology, 2023, 50(7): 432-436.
[1] |
Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. DOI: 10.1146/annurev-pathol-042020-042741.
doi: 10.1146/annurev-pathol-042020-042741 pmid: 33197221 |
[2] |
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy[J]. Immunity, 2020, 52(1): 17-35. DOI: 10.1016/j.immuni.2019.12.011.
doi: S1074-7613(19)30530-8 pmid: 31940268 |
[3] |
Jiménez-Saiz R, Anipindi VC, Galipeau H, et al. Microbial regulation of enteric eosinophils and its impact on tissue remodeling and Th2 immunity[J]. Front Immunol, 2020, 11: 155. DOI: 10.3389/fimmu.2020.00155.
doi: 10.3389/fimmu.2020.00155 pmid: 32117293 |
[4] |
Roviello G, Iannone LF, Bersanelli M, et al. The gut microbiome and efficacy of cancer immunotherapy[J]. Pharmacol Ther, 2022, 231: 107973. DOI: 10.1016/j.pharmthera.2021.107973.
doi: 10.1016/j.pharmthera.2021.107973 |
[5] |
Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe?[J]. Gut, 2020, 69(10): 1867-1876. DOI: 10.1136/gutjnl-2020-321153.
doi: 10.1136/gutjnl-2020-321153 pmid: 32759302 |
[6] |
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103. DOI: 10.1126/science.aan4236.
doi: 10.1126/science.aan4236 pmid: 29097493 |
[7] |
Yuan Z, Li Y, Zhang S, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments[J]. Mol Cancer, 2023, 22(1): 48. DOI: 10.1186/s12943-023-01744-8.
doi: 10.1186/s12943-023-01744-8 pmid: 36906534 |
[8] |
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020, 17(8): 807-821. DOI: 10.1038/s41423-020-0488-6.
doi: 10.1038/s41423-020-0488-6 pmid: 32612154 |
[9] |
Simpson RC, Shanahan ER, Batten M, et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome[J]. Nat Med, 2022, 28(11): 2344-2352. DOI: 10.1038/s41591-022-01965-2.
doi: 10.1038/s41591-022-01965-2 pmid: 36138151 |
[10] |
Wang Y, Zhang H, Liu C, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts[J]. J Hematol Oncol, 2022, 15(1): 111. DOI: 10.1186/s13045-022-01325-0.
doi: 10.1186/s13045-022-01325-0 |
[11] |
Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer[J]. Ann Oncol, 2018, 29(6): 1437-1444. DOI: 10.1093/annonc/mdy103.
doi: S0923-7534(19)34893-8 pmid: 29617710 |
[12] |
Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients[J]. Science, 2021, 371(6529): 602-609. DOI: 10.1126/science.abb5920.
doi: 10.1126/science.abb5920 pmid: 33303685 |
[13] |
Kawanabe-Matsuda H, Takeda K, Nakamura M, et al. Dietary lactobacillus-derived exopolysaccharide enhances immune-checkpoint blockade therapy[J]. Cancer Discov, 2022, 12(5): 1336-1355. DOI: 10.1158/2159-8290.CD-21-0929.
doi: 10.1158/2159-8290.CD-21-0929 pmid: 35180303 |
[14] |
Shi L, Sheng J, Chen G, et al. Combining IL-2-based immunotherapy with commensal probiotics produces enhanced antitumor immune response and tumor clearance[J]. J Immunother Cancer, 2020, 8(2): e000973. DOI: 10.1136/jitc-2020-000973.
doi: 10.1136/jitc-2020-000973 |
[15] |
Zhang SL, Mao YQ, Zhang ZY, et al. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer[J]. Theranostics, 2021, 11(9): 4155-4170. DOI: 10.7150/thno.54476.
doi: 10.7150/thno.54476 |
[16] |
He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity[J]. Cell Metab, 2021, 33(5): 988-1000.e7. DOI: 10.1016/j.cmet.2021.03.002.
doi: 10.1016/j.cmet.2021.03.002 |
[17] |
Mager LF, Burkhard R, Pett N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510): 1481-1489. DOI: 10.1126/science.abc3421.
doi: 10.1126/science.abc3421 pmid: 32792462 |
[18] |
Lee SH, Cho SY, Yoon Y, et al. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice[J]. Nat Microbiol, 2021, 6(3): 277-288. DOI: 10.1038/s41564-020-00831-6.
doi: 10.1038/s41564-020-00831-6 |
[19] |
Wang H, Rong X, Zhao G, et al. The microbial metabolite trime-thylamine N-oxide promotes antitumor immunity in triple-negative breast cancer[J]. Cell Metab, 2022, 34(4): 581-594.e8. DOI: 10.1016/j.cmet.2022.02.010.
doi: 10.1016/j.cmet.2022.02.010 pmid: 35278352 |
[20] |
Holstein SA, Lunning MA. CAR T-cell therapy in hematologic malignancies: a voyage in progress[J]. Clin Pharmacol Ther, 2020, 107(1): 112-122. DOI: 10.1002/cpt.1674.
doi: 10.1002/cpt.1674 pmid: 31622496 |
[21] |
Uribe-Herranz M, Bittinger K, Rafail S, et al. Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12[J]. JCI Insight, 2018, 3(4): e94952. DOI: 10.1172/jci.insight.94952.
doi: 10.1172/jci.insight.94952 |
[22] |
Smith M, Dai A, Ghilardi G, et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy[J]. Nat Med, 2022, 28(4): 713-723. DOI: 10.1038/s41591-022-01702-9.
doi: 10.1038/s41591-022-01702-9 pmid: 35288695 |
[23] |
Stein-Thoeringer CK, Saini NY, Zamir E, et al. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy[J]. Nat Med, 2023, 29(4): 906-916. DOI: 10.1038/s41591-023-02234-6.
doi: 10.1038/s41591-023-02234-6 pmid: 36914893 |
[24] |
Yang D, Wang X, Zhou X, et al. Blood microbiota diversity determines response of advanced colorectal cancer to chemotherapy combined with adoptive T cell immunotherapy[J]. Oncoimmunology, 2021, 10(1): 1976953. DOI: 10.1080/2162402X.2021.1976953.
doi: 10.1080/2162402X.2021.1976953 |
[25] |
Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359(6371): 104-108. DOI: 10.1126/science.aao3290.
doi: 10.1126/science.aao3290 pmid: 29302014 |
[26] |
Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients[J]. Science, 2021, 371(6529): 595-602. DOI: 10.1126/science.abf3363.
doi: 10.1126/science.abf3363 pmid: 33542131 |
[27] |
Elkrief A, Routy B. First clinical proof-of-concept that FMT can overcome resistance to ICIs[J]. Nat Rev Clin Oncol, 2021, 18(6): 325-326. DOI: 10.1038/s41571-021-00502-3.
doi: 10.1038/s41571-021-00502-3 pmid: 33742164 |
[28] |
Ianiro G, Rossi E, Thomas AM, et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma[J]. Nat Commun, 2020, 11(1): 4333. DOI: 10.1038/s41467-020-18127-y.
doi: 10.1038/s41467-020-18127-y pmid: 32859933 |
[29] |
Holvoet T, Joossens M, Vázquez-Castellanos JF, et al. Fecal microbiota transplantation reduces symptoms in some patients with irritable bowel syndrome with predominant abdominal bloating: short- and long-term results from a placebo-controlled randomized trial[J]. Gastroenterology, 2021, 160(1): 145-157.e8. DOI: 10.1053/j.gastro.2020.07.013.
doi: 10.1053/j.gastro.2020.07.013 pmid: 32681922 |
[30] |
Snigdha S, Ha K, Tsai P, et al. Probiotics: potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan[J]. Pharmacol Ther, 2022, 231: 107978. DOI: 10.1016/j.pharmthera.2021.107978.
doi: 10.1016/j.pharmthera.2021.107978 |
[31] |
Griffin ME, Espinosa J, Becker JL, et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy[J]. Science, 2021, 373(6558): 1040-1046. DOI: 10.1126/science.abc9113.
doi: 10.1126/science.abc9113 pmid: 34446607 |
[32] |
Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity[J]. Nature, 2019, 565(7741): 600-605. DOI: 10.1038/s41586-019-0878-z.
doi: 10.1038/s41586-019-0878-z |
[33] |
Dizman N, Meza L, Bergerot P, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial[J]. Nat Med, 2022, 28(4): 704-712. DOI: 10.1038/s41591-022-01694-6.
doi: 10.1038/s41591-022-01694-6 pmid: 35228755 |
[34] |
Tomita Y, Goto Y, Sakata S, et al. Clostridium butyricum therapy restores the decreased efficacy of immune checkpoint blockade in lung cancer patients receiving proton pump inhibitors[J]. Oncoimmunology, 2022, 11(1): 2081010. DOI: 10.1080/2162402X.2022.2081010.
doi: 10.1080/2162402X.2022.2081010 |
[35] |
Perler BK, Friedman ES, Wu GD. The role of the gut microbiota in the relationship between diet and human health[J]. Annu Rev Physiol, 2023, 85: 449-468. DOI: 10.1146/annurev-physiol-031522-092054.
doi: 10.1146/annurev-physiol-031522-092054 |
[36] |
Gutierrez Lopez DE, Lashinger LM, Weinstock GM, et al. Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet[J]. Cell Metab, 2021, 33(5): 873-887. DOI: 10.1016/j.cmet.2021.03.015.
doi: 10.1016/j.cmet.2021.03.015 pmid: 33789092 |
[37] |
Coutzac C, Jouniaux JM, Paci A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer[J]. Nat Commun, 2020, 11(1): 2168. DOI: 10.1038/s41467-020-16079-x.
doi: 10.1038/s41467-020-16079-x |
[38] |
Zheng DW, Li RQ, An JX, et al. Prebiotics-encapsulated probiotic spores regulate gut microbiota and suppress colon cancer[J]. Adv Mater, 2020, 32(45): e2004529. DOI: 10.1002/adma.202004529.
doi: 10.1002/adma.202004529 |
[39] |
Huang J, Liu D, Wang Y, et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy[J]. Gut, 2022, 71(4): 734-745. DOI: 10.1136/gutjnl-2020-321031.
doi: 10.1136/gutjnl-2020-321031 |
[40] |
Han K, Nam J, Xu J, et al. Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel[J]. Nat Biomed Eng, 2021, 5(11): 1377-1388. DOI: 10.1038/s41551-021-00749-2.
doi: 10.1038/s41551-021-00749-2 pmid: 34168321 |
[41] |
Messaoudene M, Pidgeon R, Richard C, et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota[J]. Cancer Discov, 2022, 12(4): 1070-1087. DOI: 10.1158/2159-8290.CD-21-0808.
doi: 10.1158/2159-8290.CD-21-0808 pmid: 35031549 |
[42] |
Spencer CN, McQuade JL, Gopalakrishnan V, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response[J]. Science, 2021, 374(6575): 1632-1640. DOI: 10.1126/science.aaz7015.
doi: 10.1126/science.aaz7015 pmid: 34941392 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[13] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||