国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (6): 354-358.doi: 10.3760/cma.j.cn371439-20240318-00061
收稿日期:
2024-03-18
修回日期:
2024-04-21
出版日期:
2024-06-08
发布日期:
2024-06-28
通讯作者:
岳红云,Email: 基金资助:
Zhang Baihong1, Yue Hongyun2()
Received:
2024-03-18
Revised:
2024-04-21
Online:
2024-06-08
Published:
2024-06-28
Contact:
Yue Hongyun, Email: Supported by:
摘要:
细胞毒性药物、分子靶向药物和免疫检查点抑制剂构成了目前肿瘤系统治疗的基本模式,新作用机制的抗肿瘤药物,包括激酶抑制剂、治疗性抗体、核酸阻断剂、治疗性疫苗、基因编辑免疫细胞、微型机器人和数字药物将改变现有的治疗模式。靶向神经、多糖、脂质和菌群的药物可能逐步进入肿瘤临床。
张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358.
Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action[J]. Journal of International Oncology, 2024, 51(6): 354-358.
[1] |
Scott EC, Baines AC, Gong YT, et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century[J]. Nat Rev Drug Discov, 2023, 22(8): 625-640. DOI: 10.1038/s41573-023-00723-4.
pmid: 37344568 |
[2] |
Micalizzi DS, Sequist LV, Haber DA. Deploying blood-based cancer screening[J]. Science, 2024, 383(6681): 368-370. DOI: 10.1126/science.adk1213.
pmid: 38271495 |
[3] |
Bedard PL, Hyman DM, Davids MS, et al. Small molecules, big impact: 20 years of targeted therapy in oncology[J]. Lancet, 2020, 395(10229): 1078-1088. DOI: 10.1016/S0140-6736(20)30164-1.
pmid: 32222192 |
[4] |
Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolu-tion—a game-changing era for breast cancer treatment[J]. Nat Rev Clin Oncol, 2024, 21(2): 89-105. DOI: 10.1038/s41571-023-00840-4.
pmid: 38082107 |
[5] | Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy[J]. Cell Death Differ, 2023, 30(9): 2035-2052. DOI: 10.1038/s41418-023-01196-z. |
[6] |
Gao JX, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies[J]. Nat Rev Cancer, 2022, 22(9): 515-532. DOI: 10.1038/s41568-022-00490-1.
pmid: 35790854 |
[7] | Davalos V, Esteller M. Cancer epigenetics in clinical practice[J]. CA Cancer J Clin, 2023, 73(4): 376-424. DOI: 10.3322/caac.21765. |
[8] | Deng XL, Qing Y, Horne D, et al. The roles and implications of RNA m6A modification in cancer[J]. Nat Rev Clin Oncol, 2023, 20(8): 507-526. DOI: 10.1038/s41571-023-00774-x. |
[9] | Fustin JM, Kojima R, Itoh K, et al. Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock[J]. Proc Natl Acad Sci U S A, 2018, 115(23): 5980-5985. DOI: 10.1073/pnas.1721371115. |
[10] | Vainonen JP, Momeny M, Westermarck J. Druggable cancer phosphatases[J]. Sci Transl Med, 2021, 13(588): eabe2967. DOI: 10.1126/scitranslmed.abe2967. |
[11] |
Carter PJ, Rajpal A. Designing antibodies as therapeutics[J]. Cell, 2022, 185(15): 2789-2805. DOI: 10.1016/j.cell.2022.05.029.
pmid: 35868279 |
[12] |
Galvez-Cancino F, Simpson AP, Costoya C, et al. Fcγ receptors and immunomodulatory antibodies in cancer[J]. Nat Rev Cancer, 2024, 24(1): 51-71. DOI: 10.1038/s41568-023-00637-8.
pmid: 38062252 |
[13] |
Kontermann RE, Brinkmann U. Bispecific antibodies[J]. Drug Discov Today, 2015, 20(7): 838-847. DOI: 10.1016/j.drudis.2015.02.008.
pmid: 25728220 |
[14] |
Weidanz J. Targeting cancer with bispecific antibodies[J]. Science, 2021, 371(6533): 996-997. DOI: 10.1126/science.abg5568.
pmid: 33649167 |
[15] | Anon. An NK-cell therapy for CD30+ lymphomas[J]. Cancer Discov, 2022, 12(6): 1401-1402. DOI: 10.1158/2159-8290.CD-NB2022-0027. |
[16] | Hurvitz SA. Recent progress in antibody-drug conjugate therapy for cancer[J]. Nat Cancer, 2022, 3(12): 1412-1413. DOI: 10.1038/s43018-022-00495-7. |
[17] | Tarantino P, Carmagnani Pestana R, Corti C, et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies[J]. CA Cancer J Clin, 2022, 72(2): 165-182. DOI: 10.3322/caac.21705. |
[18] |
Tarantino P, Ricciuti B, Pradhan SM, et al. Optimizing the safety of antibody-drug conjugates for patients with solid tumours[J]. Nat Rev Clin Oncol, 2023, 20(8): 558-576. DOI: 10.1038/s41571-023-00783-w.
pmid: 37296177 |
[19] |
Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics[J]. Nat Nanotechnol, 2021, 16(6): 630-643. DOI: 10.1038/s41565-021-00898-0.
pmid: 34059811 |
[20] |
Liu C, Shi QQ, Huang XA, et al. mRNA-based cancer therapeutics[J]. Nat Rev Cancer, 2023, 23(8): 526-543. DOI: 10.1038/s41568-023-00586-2.
pmid: 37311817 |
[21] | Winkle M, El-Daly SM, Fabbri M, et al. Noncoding RNA therapeutics-challenges and potential solutions[J]. Nat Rev Drug Discov, 2021, 20(8): 629-651. DOI: 10.1038/s41573-021-00219-z. |
[22] |
Childs-Disney JL, Yang XY, Gibaut QMR, et al. Targeting RNA structures with small molecules[J]. Nat Rev Drug Discov, 2022, 21(10): 736-762. DOI: 10.1038/s41573-022-00521-4.
pmid: 35941229 |
[23] | Wang JY, Doudna JA. CRISPR technology: a decade of genome editing is only the beginning[J]. Science, 2023, 379(6629): eadd8643. DOI: 10.1126/science.add8643. |
[24] |
Saxena M, van der Burg SH, Melief CJM, et al. Therapeutic cancer vaccines[J]. Nat Rev Cancer, 2021, 21(6): 360-378. DOI: 10.1038/s41568-021-00346-0.
pmid: 33907315 |
[25] |
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J]. Nat Rev Clin Oncol, 2021, 18(4): 215-229. DOI: 10.1038/s41571-020-00460-2.
pmid: 33473220 |
[26] |
Dolgin E. Personalized cancer vaccines pass first major clinical test[J]. Nat Rev Drug Discov, 2023, 22(8): 607-609. DOI: 10.1038/d41573-023-00118-5.
pmid: 37438497 |
[27] | Adamik J, Butterfield LH. What's next for cancer vaccines[J]. Sci Transl Med, 2022, 14(670): eabo4632. DOI: 10.1126/scitranslmed.abo4632. |
[28] |
Sellars MC, Wu CJ, Fritsch EF. Cancer vaccines: building a bridge over troubled waters[J]. Cell, 2022, 185(15): 2770-2788. DOI: 10.1016/j.cell.2022.06.035.
pmid: 35835100 |
[29] |
Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines[J]. Nat Rev Drug Discov, 2022, 21(4): 261-282. DOI: 10.1038/s41573-021-00387-y.
pmid: 35105974 |
[30] |
Irvine DJ, Maus MV, Mooney DJ, et al. The future of engineered immune cell therapies[J]. Science, 2022, 378(6622): 853-858. DOI: 10.1126/science.abq6990.
pmid: 36423279 |
[31] | Baker DJ, Arany Z, Baur JA, et al. CAR T therapy beyond cancer: the evolution of a living drug[J]. Nature, 2023, 619(7971): 707-715. DOI: 10.1038/s41586-023-06243-w. |
[32] |
Lahimchi MR, Maroufi F, Maali A. Induced pluripotent stem cell-derived chimeric antigen receptor T cells: the intersection of stem cells and immunotherapy[J]. Cell Reprogram, 2023, 25(5): 195-211. DOI: 10.1089/cell.2023.0041.
pmid: 37782910 |
[33] |
Dagher OK, Posey ADJ. Forks in the road for CAR T and CAR NK cell cancer therapies[J]. Nat Immunol, 2023, 24(12): 1994-2007. DOI: 10.1038/s41590-023-01659-y.
pmid: 38012406 |
[34] |
Laskowski TJ, Biederstädt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy[J]. Nat Rev Cancer, 2022, 22(10): 557-575. DOI: 10.1038/s41568-022-00491-0.
pmid: 35879429 |
[35] |
Lasser SA, Ozbay Kurt FG, Arkhypov I, et al. Myeloid-derived suppressor cells in cancer and cancer therapy[J]. Nat Rev Clin Oncol, 2024, 21(2): 147-164. DOI: 10.1038/s41571-023-00846-y.
pmid: 38191922 |
[36] | Baulu E, Gardet C, Chuvin N, et al. TCR-engineered T cell therapy in solid tumors: state of the art and perspectives[J]. Sci Adv, 2023, 9(7): eadf3700. DOI: 10.1126/sciadv.adf3700. |
[37] | Reardon S. MEGA-CRISPR tool gives a power boost to cancer-fighting cells[J]. Nature, 2024, 626(8001): 940. DOI: 10.1038/d41586-024-00511-z. |
[38] | Ornes S. News feature: what's the best way to build a molecular machine?[J]. Proc Natl Acad Sci U S A, 2018, 115(38): 9327-9330. DOI: 10.1073/pnas.1811689115. |
[39] | Schmidt CK, Medina-Sánchez M, Edmondson RJ, et al. Enginee-ring microrobots for targeted cancer therapies from a medical perspective[J]. Nat Commun, 2020, 11(1): 5618. DOI: 10.1038/s41467-020-19322-7. |
[40] | Gwisai T, Mirkhani N, Christiansen MG, et al. Magnetic torque-driven living microrobots for increased tumor infiltration[J]. Sci Robot, 2022, 7(71): eabo0665. DOI: 10.1126/scirobotics.abo0665. |
[41] | Zhang SL, Scott EY, Singh J, et al. The optoelectronic microrobot: a versatile toolbox for micromanipulation[J]. Proc Natl Acad Sci U S A, 2019, 116(30): 14823-14828. DOI: 10.1073/pnas.1903406116. |
[42] |
Ho D. Artificial intelligence in cancer therapy[J]. Science, 2020, 367(6481): 982-983. DOI: 10.1126/science.aaz3023.
pmid: 32108102 |
[43] |
Service RF. Software-designed miniproteins could create new class of drugs[J]. Science, 2022, 376(6588): 17. DOI: 10.1126/science.abq2804.
pmid: 35357932 |
[44] | Callaway E. AlphaFold found thousands of possible psychedelics. Will its predictions help drug discovery?[J]. Nature, 2024, 626(7997): 14-15. DOI: 10.1038/d41586-024-00130-8. |
[45] | Lampe GD, King RT, Halpin-Healy TS, et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases[J]. Nat Biotechnol, 2024, 42(1): 87-98. DOI: 10.1038/s41587-023-01748-1. |
[46] | Tao F, Qi QL. Make more digital twins[J]. Nature, 2019, 573(7775): 490-491. DOI: 10.1038/d41586-019-02849-1. |
[47] | Mariño KV, Cagnoni AJ, Croci DO, et al. Targeting galectin-driven regulatory circuits in cancer and fibrosis[J]. Nat Rev Drug Discov, 2023, 22(4): 295-316. DOI: 10.1038/s41573-023-00636-2. |
[48] | Vogel FCE, Chaves-Filho AB, Schulze A. Lipids as mediators of cancer progression and metastasis[J]. Nat Cancer, 2024, 5(1): 16-29. DOI: 10.1038/s43018-023-00702-z. |
[49] | Stine ZE, Schug ZT, Salvino JM, et al. Targeting cancer metabolism in the era of precision oncology[J]. Nat Rev Drug Discov, 2022, 21(2): 141-162. DOI: 10.1038/s41573-021-00339-6. |
[50] |
Gurbatri CR, Arpaia N, Danino T. Engineering bacteria as interactive cancer therapies[J]. Science, 2022, 378(6622): 858-864. DOI: 10.1126/science.add9667.
pmid: 36423303 |
[51] |
Sajjath SM, Gola A, Fuchs E. Designer bugs as cancer drugs?[J]. Science, 2023, 380(6641): 132-133. DOI: 10.1126/science.adh3884.
pmid: 37053342 |
[52] | Erdmann J. How gut bacteria could boost cancer treatments[J]. Nature, 2022, 607(7919): 436-439. DOI: 10.1038/d41586-022-01959-7. |
[53] | Prillaman MK. How cancer hijacks the nervous system to grow and spread[J]. Nature, 2024, 626(7997): 22-24. DOI: 10.1038/d41586-024-00240-3. |
[54] | da Costa AABA, Chowdhury D, Shapiro GI, et al. Targeting replication stress in cancer therapy[J]. Nat Rev Drug Discov, 2023, 22(1): 38-58. DOI: 10.1038/s41573-022-00558-5. |
[55] | Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy[J]. Nat Cancer, 2023, 4(8): 1063-1082. DOI: 10.1038/s43018-023-00595-y. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[4] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[5] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[6] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||