[1] |
Chang ET, Ye W, Ernberg I, et al. A novel causal model for nasopharyngeal carcinoma[J]. Cancer Causes Control, 2022, 33(7): 1013-1018. DOI: 10.1007/s10552-022-01582-x.
|
[2] |
Ding X, Zhang WJ, You R, et al. Camrelizumab plus apatinib in patients with recurrent or metastatic nasopharyngeal carcinoma: an open-label, single-arm, phase Ⅱ study[J]. J Clin Oncol, 2023, 41(14): 2571-2582. DOI: 10.1200/JCO.22.01450.
|
[3] |
Jin SZ, Li RY, Chen MY, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11): 950-965. DOI: 10.1038/s41422-020-00402-8.
|
[4] |
Gong LQ, Kwong DLW, Dai W, et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma[J]. Nat Commun, 2021, 12(1): 1540. DOI: 10.1038/s41467-021-21795-z.
pmid: 33750785
|
[5] |
Chen HW, Duan XB, Deng XH, et al. EBV-upregulated B7-H3 inhibits NK cell-mediated antitumor function and contributes to nasopharyngeal carcinoma progression[J]. Cancer Immunol Res, 2023, 11(6): 830-846. DOI: 10.1158/2326-6066.CIR-22-0374.
|
[6] |
Orange JS. How I manage natural killer cell deficiency[J]. J Clin Immunol, 2020, 40(1): 13-23. DOI: 10.1007/s10875-019-00711-7.
pmid: 31754930
|
[7] |
Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host[J]. Front Microbiol, 2022, 13: 955603. DOI: 10.3389/fmicb.2022.955603.
|
[8] |
Wang ZH, Pei XF, Zhu ZQ, et al. CD47 overexpression is associated with Epstein-Barr virus infection and poor prognosis in patients with nasopharyngeal carcinoma[J]. Onco Targets Ther, 2020, 13: 3325-3334. DOI: 10.2147/OTT.S245023.
|
[9] |
von Roemeling CA, Wang YF, Qie YQ, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity[J]. Nat Commun, 2020, 11(1): 1508. DOI: 10.1038/s41467-020-15129-8.
pmid: 32198351
|
[10] |
Sun W, Chen L, Tang J, et al. Targeting EZH2 depletes LMP1-induced activated regulatory T cells enhancing antitumor immunity in nasopharyngeal carcinoma[J]. J Cancer Res Ther, 2020, 16(2): 309-319. DOI: 10.4103/jcrt.JCRT_986_19.
pmid: 32474518
|
[11] |
Liu Y, Lui KS, Ye ZD, et al. EBV latent membrane protein 1 augments γδ T cell cytotoxicity against nasopharyngeal carcinoma by induction of butyrophilin molecules[J]. Theranostics, 2023, 13(2): 458-471. DOI: 10.7150/thno.78395.
pmid: 36632221
|
[12] |
Chen HW, Zhang X, Zhang SS, et al. T cell epitope screening of Epstein-Barr virus fusion protein gB[J]. J Virol, 2021, 95(10): JVI.00021-JVI.00081. DOI: 10.1128/JVI.00081-21.
|
[13] |
Kase K, Kondo S, Wakisaka N, et al. Epstein-Barr virus LMP1 induces soluble PD-L1 in nasopharyngeal carcinoma[J]. Microorganisms, 2021, 9(3): 603. DOI: 10.3390/microorganisms9030603.
|
[14] |
Wang J, Ge JS, Wang YA, et al. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1[J]. Nat Commun, 2022, 13(1): 866. DOI: 10.1038/s41467-022-28479-2.
pmid: 35165282
|
[15] |
Caudell JJ, Gillison ML, Maghami E, et al. NCCN guidelines® insights: head and neck cancers, version 1.2022[J]. J Natl Compr Canc Netw, 2022, 20(3): 224-234. DOI: 10.6004/jnccn.2022.0016.
|
[16] |
Han JQ, Zeng N, Tian K, et al. First-line immunotherapy combinations for recurrent or metastatic nasopharyngeal carcinoma: an updated network meta-analysis and cost-effectiveness analysis[J]. Head Neck, 2023, 45(9): 2246-2258. DOI: 10.1002/hed.27452.
|
[17] |
Mai HQ, Chen QY, Chen DP, et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial[J]. Nat Med, 2021, 27(9): 1536-1543. DOI: 10.1038/s41591-021-01444-0.
|
[18] |
Yang YP, Qu S, Li JG, et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2021, 22(8): 1162-1174. DOI: 10.1016/S1470-2045(21)00302-8.
|
[19] |
Yang YP, Pan AA, Wang H, et al. Tislelizumab plus chemotherapy as first-line treatment for recurrent or metastatic nasopharyngeal cancer: a multicenter phase 3 trial (RATIONALE-309)[J]. Cancer Cell, 2023, 41(6): 1061-1072.e4. DOI: 10.1016/j.ccell.2023.04.014.
pmid: 37207654
|
[20] |
Wang FH, Wei XL, Feng JF, et al. Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: a phase Ⅱ clinical trial (POLARIS-02)[J]. J Clin Oncol, 2021, 39(7): 704-712. DOI: 10.1200/JCO.20.02712.
pmid: 33492986
|
[21] |
Jiang YF, Fang T, Lu N, et al. Anti-PD1 rechallenge in combination with anti-angiogenesis or anti-EGFR treatment beyond progression in recurrent/metastatic nasopharyngeal carcinoma patients[J]. Crit Rev Oncol Hematol, 2023, 190: 104113. DOI: 10.1016/j.critrevonc.2023.104113.
|
[22] |
Lim DWT, Kao HF, Suteja L, et al. Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma[J]. Nat Commun, 2023, 14(1): 2781. DOI: 10.1038/s41467-023-38407-7.
|
[23] |
Xiang Y, Tian MM, Huang J, et al. LMP2-mRNA lipid nanoparticle sensitizes EBV-related tumors to anti-PD-1 therapy by rever-sing T cell exhaustion[J]. J Nanobiotechnology, 2023, 21(1): 324. DOI: 10.1186/s12951-023-02069-w.
|
[24] |
Li WZ, Lv SH, Liu GY, et al. Epstein-Barr virus DNA seropositi-vity links distinct tumoral heterogeneity and immune landscape in nasopharyngeal carcinoma[J]. Front Immunol, 2023, 14: 1124066. DOI: 10.3389/fimmu.2023.1124066.
|
[25] |
Mahadeo KM, Baiocchi R, Beitinjaneh A, et al. Tabelecleucel for allogeneic haematopoietic stem-cell or solid organ transplant reci-pients with Epstein-Barr virus-positive post-transplant lymphoproliferative disease after failure of rituximab or rituximab and chemotherapy (ALLELE): a phase 3, multicentre, open-label trial[J]. Lancet Oncol, 2024, 25(3): 376-387. DOI: 10.1016/S1470-2045(23)00649-6.
|
[26] |
Jia QZ, Peng L, Chen G, et al. TCR-T cells armored with immune checkpoint blockade in EBV-positive nasopharyngeal carcinoma: the first-in-human phase 1/2 trial[J]. J Clin Oncol, 2023, 41(16): 6047. DOI: 10.1200/JCO.2023.41.16_suppl.6047.
|
[27] |
Wang CW, Chen JW, Li JY, et al. An EBV-related CD4 TCR immunotherapy inhibits tumor growth in an HLA-DP5+ nasopha-ryngeal cancer mouse model[J]. J Clin Invest, 2024, 134(8): e172092. DOI: 10.1172/JCI172092.
|
[28] |
Nickles E, Dharmadhikari B, Yating L, et al. Dendritic cell therapy with CD137L-DC-EBV-VAX in locally recurrent or metastatic nasopharyngeal carcinoma is safe and confers clinical benefit[J]. Cancer Immunol Immunother, 2022, 71(6): 1531-1543. DOI: 10.1007/s00262-021-03075-3.
|
[29] |
Zhu XZ, Perales-Puchalt A, Wojtak K, et al. DNA immunotherapy targeting BARF1 induces potent anti-tumor responses against Epstein-Barr-virus-associated carcinomas[J]. Mol Ther Oncolytics, 2022, 24: 218-229. DOI: 10.1016/j.omto.2021.12.017.
|
[30] |
Guo MR, Duan X, Peng XC, et al. A lipid-based LMP2-mRNA vaccine to treat nasopharyngeal carcinoma[J]. Nano Res, 2023, 16(4): 5357-5367. DOI: 10.1007/s12274-022-5254-x.
|
[31] |
Zeng Y, Si YF, Lan GP, et al. LMP2-DC vaccine elicits specific EBV-LMP2 response to effectively improve immunotherapy in patients with nasopharyngeal cancer[J]. Biomed Environ Sci, 2020, 33(11): 849-856. DOI: 10.3967/bes2020.115.
pmid: 33771238
|
[32] |
Rühl J, Citterio C, Engelmann C, et al. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas[J]. J Clin Invest, 2019, 129(5): 2071-2087. DOI: 10.1172/JCI125364.
pmid: 31042161
|
[33] |
Dummer R, Gyorki DE, Hyngstrom JR, et al. Final 5-year follow-up results evaluating neoadjuvant talimogene laherparepvec plus surgery in advanced melanoma: a randomized clinical trial[J]. JAMA Oncol, 2023, 9(10): 1457-1459. DOI: 10.1001/jamaoncol.2023.2789.
pmid: 37561473
|