[1] |
中国疾病预防控制中心慢性非传染性疾病预防控制中心, 国家卫生和计划生育委员会统计信息中心. 中国死因监测数据集-2016[M]. 北京: 中国科学技术出版社, 2017: 26.
|
[2] |
张世豪, 冼丽英, 高敏, 等. 基于深度学习的人工智能在病理诊断的应用进展与展望[J]. 中国医学创新, 2018, 15(25): 130-133. DOI: 10.3969/j.issn.1674-4985.2018.25.035.
|
[3] |
Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J]. J Mach Learn Res, 2011, 12: 2493-2537. DOI: 10.5555/1953048.2078186.
|
[4] |
Simon G, DiNardo CD, Takahashi K, et al. Applying artificial intelligence to address the knowledge gaps in cancer care[J]. Oncologist, 2019, 24(6): 772-782. DOI: 10.1634/theoncologist.2018-0257.
pmid: 30446581
|
[5] |
Zheng RS, Zhang SW, Zeng HM, et al. Cancer incidence and mortality in China, 2016[J]. Journal of the National Cancer Center, 2022, 2(1): 1-68. DOI: 10.1016/j.jncc.2022.02.002.
|
[6] |
Szeliski R. Computer vision: algorithms and applications (texts in computer science)[M]. London: Springer, 2011. DOI: 10.1007/978-1-84882-935-0.
|
[7] |
Togashi K. Applications of artificial intelligence to endoscopy practice: the view from Japan Digestive Disease Week 2018[J]. Dig Endosc, 2019, 31(3): 270-272. DOI: 10.1111/den.13354.
pmid: 30681203
|
[8] |
Watanabe Y, Oikawa R, Agawa S, et al. Combination of artificial intelligence-based endoscopy and miR148a methylation for gastric indefinite dysplasia diagnosis[J]. J Clin Lab Anal, 2022, 36(1): e24122. DOI: 10.1002/jcla.24122.
|
[9] |
Hirasawa T, Aoyama K, Tanimoto T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images[J]. Gastric Cancer, 2018, 21(4): 653-660. DOI: 10.1007/s10120-018-0793-2.
pmid: 29335825
|
[10] |
Sakai Y, Takemoto S, Hori K, et al. Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 4138-4141. DOI: 10.1109/EMBC.2018.8513274.
pmid: 30441266
|
[11] |
Yu T, Wang X, Zhao Z, et al. Prediction of T stage in gastric carcinoma by enhanced CT and oral contrast-enhanced ultrasonography[J]. World J Surg Oncol, 2015, 13: 184. DOI: 10.1186/s12957-015-0577-7.
pmid: 25986541
|
[12] |
Choi J, Kim SG, Im JP, et al. Comparison of endoscopic ultrasonography and conventional endoscopy for prediction of depth of tumor invasion in early gastric cancer[J]. Endoscopy, 2010, 42(9): 705-713. DOI: 10.1055/s-0030-1255617.
pmid: 20652857
|
[13] |
Liu DY, Gan T, Rao NN, et al. Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process[J]. Med Image Anal, 2016, 32: 281-294. DOI: 10.1016/j.media.2016.04.007.
|
[14] |
Li L, Chen Y, Shen Z, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging[J]. Gastric Cancer, 2020, 23(1): 126-132. DOI: 10.1007/s10120-019-00992-2.
pmid: 31332619
|
[15] |
Luo H, Xu G, Li C, et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study[J]. Lancet Oncol, 2019, 20(12): 1645-1654. DOI: 10.1016/S1470-2045(19)30637-0.
pmid: 31591062
|
[16] |
Huang Z, Liu D, Chen X, et al. Retrospective imaging studies of gastric cancer: study protocol clinical trial (SPIRIT Compliant)[J]. Medicine (Baltimore), 2020, 99(8): e19157. DOI: 10.1097/MD.0000000000019157.
|
[17] |
Li C, Shi C, Zhang H, et al. Multiple instance learning for computer aided detection and diagnosis of gastric cancer with dual-energy CT imaging[J]. J Biomed Inform, 2015, 57: 358-368. DOI: 10.1016/j.jbi.2015.08.017.
pmid: 26319541
|
[18] |
Mukhopadhyay S, Feldman MD, Abels E, et al. Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study)[J]. Am J Surg Pathol, 2018, 42(1): 39-52. DOI: 10.1097/PAS.0000000000000948.
pmid: 28961557
|
[19] |
Li Y, Li X, Xie X, et al. Deep learning based gastric cancer identification[C]// 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington: IEEE, 2018: 182-185. DOI: 10.1109/ISBI.2018.8363550.
|
[20] |
Iizuka O, Kanavati F, Kato K, et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours[J]. Sci Rep, 2020, 10(1): 1504. DOI: 10.1038/s41598-020-58467-9.
pmid: 32001752
|
[21] |
Sato Y, Sese J, Matsuyama T, et al. Preliminary study for develo-ping a navigation system for gastric cancer surgery using artificial intelligence[J]. Surg Today, 2022, 52(12): 1753-1758. DOI: 10.1007/s00595-022-02508-5.
|
[22] |
金驰, 王彤. 达芬奇机器人在胃癌手术中的应用进展[J]. 临床外科杂志, 2020, 28(10): 991-994. DOI: 10.3969/j.issn.1005-6483.2020.10.028.
|
[23] |
王晓鹏, 郭进, 李渊, 等. 达芬奇机器人联合淋巴示踪在进展期远端胃癌根治术中的应用[J]. 中国微创外科杂志, 2018, 18(3): 225-229. DOI: 10.3969/j.issn.1009-6604.2018.03.009.
|
[24] |
Adballah M, Espinel Y, Calvet L, et al. Augmented reality in laparoscopic liver resection evaluated on an ex-vivo animal model with pseudo-tumours[J]. Surg Endosc, 2022, 36(1): 833-843. DOI: 10.1007/s00464-021-08798-z.
|
[25] |
Luo H, Yin D, Zhang S, et al. Augmented reality navigation for liver resection with a stereoscopic laparoscope[J]. Comput Methods Programs Biomed, 2020, 187: 105099. DOI: 10.1016/j.cmpb.2019.105099.
|
[26] |
Lee J, An JY, Choi MG, et al. Deep learning-based survival analysis identified associations between molecular subtype and optimal adjuvant treatment of patients with gastric cancer[J]. JCO Clin Cancer Inform, 2018, 2: 1-14. DOI: 10.1200/CCI.17.00065.
pmid: 30652558
|
[27] |
Jiang Y, Xie J, Han Z, et al. Immunomarker support vector machine classifier for prediction of gastric cancer survival and adjuvant chemotherapeutic benefit[J]. Clin Cancer Res, 2018, 24(22): 5574-5584. DOI: 10.1158/1078-0432.CCR-18-0848.
pmid: 30042208
|
[28] |
Lu F, Chen Z, Yuan X, et al. MMHG:multi-modal hypergraph learning for overall survival after D 2 gastrectomy for gastric cancer[C]// 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). Orlando: IEEE, 2017: 164-169. DOI: 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.40.
|
[29] |
Korhani Kangi A, Bahrampour A. Predicting the survival of gastric cancer patients using artificial and bayesian neural networks[J]. Asian Pac J Cancer Prev, 2018, 19(2): 487-490. DOI: 10.22034/APJCP.2018.19.2.487.
|
[30] |
Jiang Y, Zhang Z, Yuan Q, et al. Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study[J]. Lancet Digit Health, 2022, 4(5): e340-e350. DOI: 10.1016/S2589-7500(22)00040-1.
|
[31] |
Hensler K, Waschulzik T, Mönig SP, et al. Quality-assured Efficient Engineering of Feedforward Neural Networks (QUEEN)-pretherapeutic estimation of lymph node status in patients with gastric carcinoma[J]. Methods Inf Med, 2005, 44(5): 647-654.
pmid: 16400373
|
[32] |
Jagric T, Potrc S, Jagric T. Prediction of liver metastases after gastric cancer resection with the use of learning vector quantization neural networks[J]. Dig Dis Sci, 2010, 55(11): 3252-3261. DOI: 10.1007/s10620-010-1155-z.
|
[33] |
Su F, Sun Y, Hu Y, et al. Development and validation of a deep learning system for ascites cytopathology interpretation[J]. Gastric Cancer, 2020, 23(6): 1041-1050. DOI: 10.1007/s10120-020-01093-1.
|
[34] |
Nakahira H, Ishihara R, Aoyama K, et al. Stratification of gastric cancer risk using a deep neural network[J]. JGH Open, 2019, 4(3): 466-471. DOI: 10.1002/jgh3.12281.
|
[35] |
Zhu Y, Wang QC, Xu MD, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy[J]. Gastrointest Endosc, 2019, 89(4): 806-815.e1. DOI: 10.1016/j.gie.2018.11.011.
pmid: 30452913
|