[1] |
Lei SY, Zheng RS, Zhang SW, et al. Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020[J]. Cancer Commun (Lond), 2021, 41(11): 1183-1194. DOI: 10.1002/cac2.12207.
|
[2] |
高晓敏, 郭旭, 王玲, 等. 肿瘤微环境调控乳腺癌HER2靶向药物耐药机制及逆转策略[J]. 中国癌症防治杂志, 2023, 15(5): 581-586. DOI: 10.3969/j.issn.1674-5671.2023.05.18.
|
[3] |
Amer HT, Stein U, El Tayebi HM. The monocyte, a maestro in the tumor microenvironment (TME) of breast cancer[J]. Cancers (Basel), 2022, 14(21): 5460. DOI: 10.3390/cancers14215460.
|
[4] |
Liu Y, Ji XM, Kang NN, et al. Tumor necrosis factor α inhibition overcomes immunosuppressive M2b macrophage-induced bevacizumab resistance in triple-negative breast cancer[J]. Cell Death Dis, 2020, 11(11): 993. DOI: 10.1038/s41419-020-03161-x.
pmid: 33214550
|
[5] |
Qiao JH, Chen YB, Mi YJ, et al. Macrophages confer resistance to BET inhibition in triple-negative breast cancer by upregulating IKBKE[J]. Biochem Pharmacol, 2020, 180: 114126. DOI: 10.1016/ j.bcp.2020.114126.
|
[6] |
Mehta AK, Cheney EM, Hartl CA, et al. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer[J]. Nat Cancer, 2021, 2(1): 66-82. DOI: 10.1038/s43018-020-00148-7.
|
[7] |
You D, Kim H, Jeong Y, et al. Tumorigenicity of EGFR- and/or HER2-positive breast cancers is mediated by recruitment of tumor-associated macrophages[J]. Int J Mol Sci, 2023, 24(2): 1443. DOI: 10.3390/ijms24021443.
|
[8] |
Ahmed S, Mohamed HT, El-Husseiny N, et al. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(6): 118995. DOI: 10.1016/j.bbamcr.2021.118995.
|
[9] |
Hu XC, Liu YW, Zhang XS, et al. The anti-B7-H4 checkpoint synergizes trastuzumab treatment to promote phagocytosis and eradicate breast cancer[J]. Neoplasia, 2020, 22(11): 539-553. DOI: 10.1016/j.neo.2020.08.007.
pmid: 32966956
|
[10] |
Salemme V, Centonze G, Avalle L, et al. The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity[J]. Front Oncol, 2023, 13: 37265795. DOI: 10.3389/fonc.2023.1170264.
|
[11] |
Liu X, Lu Y, Huang J, et al. CD16+fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition[J]. Cancer Cell, 2022, 40(11): 1341-1357. DOI: 10.1016/j.ccell.2022.10.015.
|
[12] |
Du RX, Zhang XM, Lu XY, et al. PDPN positive CAFs contribute to HER2 positive breast cancer resistance to trastuzumab by inhibiting antibody-dependent NK cell-mediated cytotoxicity[J]. Drug Resist Updat, 2023, 68: 100947. DOI: 10.1016/j.drup.2023.100947.
|
[13] |
Watson SS, Dane M, Chin K, et al. Microenvironment-mediated mechanisms of resistance to HER2 inhibitors differ between HER2+ breast cancer subtypes[J]. Cell Syst, 2018, 6(3): 329-342.e6. DOI: 10.1016/j.cels.2018.02.001.
|
[14] |
Novotny CJ, Pollari S, Park JH, et al. Overcoming resistance to HER2 inhibitors through state-specific kinase binding[J]. Nat Chem Biol, 2016, 12(11): 923-930. DOI: 10.1038/nchembio.2171.
pmid: 27595329
|
[15] |
Fernández-Nogueira P, Mancino M, Fuster G, et al. Tumor-associated fibroblasts promote HER2-targeted therapy resistance through FGFR2 activation[J]. Clin Cancer Res, 2020, 26(6): 1432-1448. DOI: 10.1158/1078-0432.CCR-19-0353.
pmid: 31699826
|
[16] |
Zou YT, Zheng SQ, Xie XH, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer[J]. Nat Commun, 2022, 13(1): 2672. DOI: 10.1038/s41467-022-30217-7.
pmid: 35562334
|
[17] |
Zervantonakis IK, Poskus MD, Scott AL, et al. Fibroblast-tumor cell signaling limits HER2 kinase therapy response via activation of mTOR and antiapoptotic pathways[J]. Proc Natl Acad Sci U S A, 2020, 117(28): 16500-16508. DOI: 10.1073/pnas.2000648117.
|
[18] |
Elshazly AM, Gewirtz DA. An overview of resistance to human epidermal growth factor receptor 2 (HER2) targeted therapies in breast cancer[J]. Cancer Drug Resist, 2022, 5(2): 472-486. DOI: 10.20517/cdr.2022.09.
pmid: 35800378
|
[19] |
Zazo S, González-Alonso P, Martín-Aparicio E, et al. Autocrine CCL5 effect mediates trastuzumab resistance by ERK pathway activation in HER2-positive breast cancer[J]. Mol Cancer Ther, 2020, 19(8): 1696-1707. DOI: 10.1158/1535-7163.MCT-19-1172.
pmid: 32404410
|
[20] |
Zheng GX, Guo ZY, Li WM, et al. Interaction between HLA-G and NK cell receptor KIR2DL4 orchestrates HER2-positive breast cancer resistance to trastuzumab[J]. Signal Transduct Target Ther, 2021, 6(1): 236. DOI: 10.1038/s41392-021-00629-w.
|
[21] |
曹长青. 增强ADCC效应提高曲妥珠单抗治疗HER2阳性乳腺癌疗效的相关研究[D]. 西安: 中国人民解放军空军军医大学, 2023. DOI: 10.27002/d.cnki.gsjyu.2023.000305.
|
[22] |
Liu SY, Li SQ, Wang BL, et al. Cooperative effect of oncogenic Met and PIK3CA in an HGF-dominant environment in breast cancer[J]. Mol Cancer Ther, 2019, 18(2): 399-412. DOI: 10. 1158/1535-7163.MCT-18-0710.
|
[23] |
Singh S, Lamichhane A, Rafsanjani Nejad P, et al. Therapeutic targeting of stromal-tumor HGF-MET signaling in an organotypic triple-negative breast tumor model[J]. Mol Cancer Res, 2022, 20(7): 1166-1177. DOI: 10.1158/1541-7786.MCR-21-0317.
|
[24] |
Mortezaee K, Majidpoor J. The impact of hypoxia on extracellular vesicle secretome profile of cancer[J]. Med Oncol, 2023, 40(5): 128. DOI: 10.1007/s12032-023-01995-x.
pmid: 36964452
|
[25] |
Wu XL, Ren Y, Yao R, et al. Circular RNA circ-MMP11 contributes to lapatinib resistance of breast cancer cells by regulating the miR-153-3p/ANLN axis[J]. Front Oncol, 2021, 11: 639961. DOI: 10.3389/fonc.2021.639961.
|
[26] |
Zhang HL, Yan CX, Wang YH. Exosome-mediated transfer of circHIPK3 promotes trastuzumab chemoresistance in breast cancer[J]. J Drug Target, 2021, 29(9): 1004-1015. DOI: 10.1080/1061186X.2021.1906882.
|
[27] |
Chen MK, Du Y, Sun L, et al. H2O2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism[J]. J Biol Chem, 2019, 294(21): 8516-8528. DOI: 10.1074/jbc.RA118.005953.
|
[28] |
Chu YY, Yam C, Chen MK, et al. Blocking c-Met and EGFR reverses acquired resistance of PARP inhibitors in triple-negative breast cancer[J]. Am J Cancer Res, 2020, 10(2): 648-661.
|
[29] |
Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy[J]. Front Mol Biosci, 2019, 6: 160. DOI: 10.3389/fmolb.2019.00160.
pmid: 32118030
|
[30] |
Neophytou C, Boutsikos P, Papageorgis P. Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis[J]. Front Oncol, 2018, 8: 31. DOI: 10.3389/fonc.2018.00031.
pmid: 29520340
|
[31] |
Hanker AB, Estrada MV, Bianchini G, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER2 and PI3K in HER2+ breast cancer[J]. Cancer Res, 2017, 77(12): 3280-3292. DOI: 10.1158/0008-5472.CAN-16-2808.
|