国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (5): 299-303.doi: 10.3760/cma.j.cn371439-20230120-00060
收稿日期:
2023-01-20
修回日期:
2023-02-28
出版日期:
2023-05-08
发布日期:
2023-06-27
通讯作者:
金风
E-mail:8865jinf8865@yeah.net
基金资助:
Gu Anqin1, Long Jinhua2, Jin Feng1,2()
Received:
2023-01-20
Revised:
2023-02-28
Online:
2023-05-08
Published:
2023-06-27
Contact:
Jin Feng
E-mail:8865jinf8865@yeah.net
Supported by:
摘要:
免疫治疗主要是利用机体免疫系统的各效应单元克服肿瘤的免疫逃逸或适应性免疫抵抗,精准识别并清除肿瘤细胞,使免疫系统的功能正常化或增强;其主要包括细胞因子治疗、抑制免疫检查点治疗、过继细胞免疫治疗、肿瘤疫苗和抗体靶向治疗等。鼻咽癌的免疫特征使患者可能适合免疫治疗或与放化疗联合治疗。近年来,PD-1抑制剂单独治疗及其与化疗联合治疗在复发/转移的鼻咽癌治疗中表现出良好的抗肿瘤活性及安全性,将免疫检查点抑制剂纳入鼻咽癌的治疗模式已成为临床研究的热点。
顾安琴, 龙金华, 金风. 鼻咽癌免疫治疗的临床研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 299-303.
Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma[J]. Journal of International Oncology, 2023, 50(5): 299-303.
[1] |
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integra-ting immunity's roles in cancer suppression and promotion[J]. Science, 2011, 331(6024): 1565-1570. DOI: 10.1126/science.1203486.
doi: 10.1126/science.1203486 pmid: 21436444 |
[2] |
Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape[J]. Nat Rev Clin Oncol, 2017, 14(3): 155-167. DOI: 10.1038/nrclinonc.2016.144.
doi: 10.1038/nrclinonc.2016.144 |
[3] |
Vidal P. Interferon α in cancer immunoediting: from elimination to escape[J]. Scand J Immunol, 2020, 91(5): e12863. DOI: 10.1111/sji.12863.
doi: 10.1111/sji.12863 |
[4] |
Lee AW, Ma BB, Ng WT, et al. Management of nasopharyngeal carcinoma: current practice and future perspective[J]. J Clin Oncol, 2015, 33(29): 3356-3364. DOI: 10.1200/JCO.2015.60.9347.
doi: 10.1200/JCO.2015.60.9347 pmid: 26351355 |
[5] |
Lin M, Zhang XL, You R, et al. Neoantigen landscape in metastatic nasopharyngeal carcinoma[J]. Theranostics, 2021, 11(13): 6427-6444. DOI: 10.7150/thno.53229.
doi: 10.7150/thno.53229 pmid: 33995666 |
[6] |
Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. DOI: 10.1016/S0140-6736(19)30956-0.
doi: 10.1016/S0140-6736(19)30956-0 |
[7] |
Chow JC, Ngan RK, Cheung KM, et al. Immunotherapeutic approaches in nasopharyngeal carcinoma[J]. Expert Opin Biol Ther, 2019, 19(11): 1165-1172. DOI: 10.1080/14712598.2019.1650910.
doi: 10.1080/14712598.2019.1650910 pmid: 31361154 |
[8] |
Cai TT, Ye SB, Liu YN, et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma[J]. PLoS Pathog, 2017, 13(7): e1006503. DOI: 10.1371/journal.ppat.1006503.
doi: 10.1371/journal.ppat.1006503 |
[9] |
Lo AK, Dawson CW, Lung HL, et al. The role of EBV-encoded LMP1 in the NPC tumor microenvironment: from function to therapy[J]. Front Oncol, 2021, 11: 640207. DOI: 10.3389/fonc.2021.640207.
doi: 10.3389/fonc.2021.640207 |
[10] |
Zhang B, Miao T, Shen X, et al. EB virus-induced ATR activation accelerates nasopharyngeal carcinoma growth via M2-type macrophages polarization[J]. Cell Death Dis, 2020, 11(9): 742. DOI: 10.1038/s41419-020-02925-9.
doi: 10.1038/s41419-020-02925-9 pmid: 32917854 |
[11] |
Jin S, Li R, Chen MY, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11): 950-965. DOI: 10.1038/s41422-020-00402-8.
doi: 10.1038/s41422-020-00402-8 |
[12] |
Gong L, Kwong DL, Dai W, et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific cha-racteristics in the microenvironment of nasopharyngeal carcinoma[J]. Nat Commun, 2021, 12(1): 1540. DOI: 10.1038/s41467-021-21795-z.
doi: 10.1038/s41467-021-21795-z |
[13] |
Chen YP, Yin JH, Li WF, et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11): 1024-1042. DOI: 10.1038/s41422-020-0374-x.
doi: 10.1038/s41422-020-0374-x |
[14] |
Guo L, Chen Y, Wang J, et al. Down-regulation of UL16-binding protein 3 mediated by interferon-gamma impairs immune killing in nasopharyngeal carcinoma[J]. Am J Transl Res, 2020, 12(10): 6509-6523.
pmid: 33194048 |
[15] |
Ahmed MM, Gebriel MG, Morad EA, et al. Expression of immune checkpoint regulators, cytotoxic T-lymphocyte antigen-4, and programmed death-ligand 1 in Epstein-Barr virus-associated nasopharyngeal carcinoma[J]. Appl Immunohistochem Mol Morphol, 2021, 29(6): 401-408. DOI: 10.1097/PAI.0000000000000903.
doi: 10.1097/PAI.0000000000000903 |
[16] |
Kim TK, Vandsemb EN, Herbst RS, et al. Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities[J]. Nat Rev Drug Discov, 2022, 21(7): 529-540. DOI: 10.1038/s41573-022-00493-5.
doi: 10.1038/s41573-022-00493-5 pmid: 35701637 |
[17] |
Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion[J]. Nat Rev Immunol, 2020, 20(4): 209-215. DOI: 10.1038/s41577-019-0264-y.
doi: 10.1038/s41577-019-0264-y |
[18] |
Fang W, Yang Y, Ma Y, et al. Camrelizumab (SHR-1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma: results from two single-arm, phase 1 trials[J]. Lancet Oncol, 2018, 19(10): 1338-1350. DOI: 10.1016/S1470-2045(18)30495-9.
doi: S1470-2045(18)30495-9 pmid: 30213452 |
[19] |
Mai HQ, Chen QY, Chen D, et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial[J]. Nat Med, 2021, 27(9): 1536-1543. DOI: 10.1038/s41591-021-01444-0.
doi: 10.1038/s41591-021-01444-0 |
[20] |
Wang FH, Wei XL, Feng J, et al. Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: a phase Ⅱ clinical trial (POLARIS-02)[J]. J Clin Oncol, 2021, 39(7): 704-712. DOI: 10.1200/JCO.20.02712.
doi: 10.1200/JCO.20.02712 pmid: 33492986 |
[21] |
Even C, Wang HM, Li SH, et al. Phase Ⅱ, randomized study of spartalizumab (PDR001), an anti-PD-1 antibody, versus chemotherapy in patients with recurrent/metastatic nasopharyngeal cancer[J]. Clin Cancer Res, 2021, 27(23): 6413-6423. DOI: 10.1158/1078-0432.CCR-21-0822.
doi: 10.1158/1078-0432.CCR-21-0822 |
[22] |
Swanson MS, Sinha UK. Rationale for combined blockade of PD-1 and CTLA-4 in advanced head and neck squamous cell cancer—review of current data[J]. Oral Oncol, 2015, 51(1): 12-15. DOI: 10.1016/j.oraloncology.2014.10.010.
doi: 10.1016/j.oraloncology.2014.10.010 pmid: 25459157 |
[23] |
Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition[J]. Am J Clin Oncol, 2016, 39(1): 98-106. DOI: 10.1097/COC.0000000000000239.
doi: 10.1097/COC.0000000000000239 |
[24] |
Grimm EA, Mazumder A, Zhang HZ, et al. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes[J]. J Exp Med, 1982, 155(6): 1823-1841. DOI: 10.1084/jem.155.6.1823.
doi: 10.1084/jem.155.6.1823 pmid: 6176669 |
[25] |
Chua D, Huang J, Zheng B, et al. Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma[J]. Int J Cancer, 2001, 94(1): 73-80. DOI: 10.1002/ijc.1430.
doi: 10.1002/ijc.1430 pmid: 11668481 |
[26] |
Guo X, Zheng H, Luo W, et al. 5T4-specific chimeric antigen receptor modification promotes the immune efficacy of cytokine-induced killer cells against nasopharyngeal carcinoma stem cell-like cells[J]. Sci Rep, 2017, 7(1): 4859. DOI: 10.1038/s41598-017-04756-9.
doi: 10.1038/s41598-017-04756-9 pmid: 28687750 |
[27] |
Lee AZE, Tan LSY, Lim CM. Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer[J]. Oral Oncol, 2018, 84: 61-70. DOI: 10.1016/j.oraloncology.2018.07.011.
doi: S1368-8375(18)30267-7 pmid: 30115477 |
[28] |
Smith C, Lee V, Schuessler A, et al. Pre-emptive and therapeutic adoptive immunotherapy for nasopharyngeal carcinoma: phenotype and effector function of T cells impact on clinical response[J]. Oncoimmunology, 2017, 6(2): e1273311. DOI: 10.1080/2162402X.2016.1273311.
doi: 10.1080/2162402X.2016.1273311 |
[29] |
Cramer JD, Burtness B, Ferris RL. Immunotherapy for head and neck cancer: recent advances and future directions[J]. Oral Oncol, 2019, 99: 104460. DOI: 10.1016/j.oraloncology.2019.104460.
doi: 10.1016/j.oraloncology.2019.104460 |
[30] |
Apetoh L, Ladoire S, Coukos G, et al. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure?[J]. Ann Oncol, 2015, 26(9): 1813-1823. DOI: 10.1093/annonc/mdv209.
doi: S0923-7534(19)31756-9 pmid: 25922066 |
[31] |
Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times[J]. NAR Cancer, 2020, 2(1): zcaa002. DOI: 10.1093/narcan/zcaa002.
doi: 10.1093/narcan/zcaa002 |
[32] |
Makowska A, Meier S, Shen L, et al. Anti-PD-1 antibody increases NK cell cytotoxicity towards nasopharyngeal carcinoma cells in the context of chemotherapy-induced upregulation of PD-1 and PD-L1[J]. Cancer Immunol Immunother, 2021, 70(2): 323-336. DOI: 10.1007/s00262-020-02681-x.
doi: 10.1007/s00262-020-02681-x |
[33] |
Wu J, Waxman DJ. Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy[J]. Cancer Lett, 2018, 419: 210-221. DOI: 10.1016/j.canlet.2018.01.050.
doi: S0304-3835(18)30072-7 pmid: 29414305 |
[34] |
Salewski I, Henne J, Engster L, et al. Combined gemcitabine and immune-checkpoint inhibition conquers anti-PD-L1 resistance in low-immunogenic mismatch repair-deficient tumors[J]. Int J Mol Sci, 2021, 22(11): 5990. DOI: 10.3390/ijms22115990.
doi: 10.3390/ijms22115990 |
[35] |
Xue Y, Gao S, Gou J, et al. Platinum-based chemotherapy in combination with PD-1/PD-L1 inhibitors: preclinical and clinical studies and mechanism of action[J]. Expert Opin Drug Deliv, 2021, 18(2): 187-203. DOI: 10.1080/17425247.2021.1825376.
doi: 10.1080/17425247.2021.1825376 |
[36] |
Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy[J]. Cell Mol Biol Lett, 2019, 24: 40. DOI: 10.1186/s11658-019-0164-y.
doi: 10.1186/s11658-019-0164-y pmid: 31223315 |
[37] |
Yang YP, Qu S, et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2021, 22(8): 1162-1174. DOI: 10.1016/S1470-2045(21)00302-8.
doi: 10.1016/S1470-2045(21)00302-8 |
[38] |
Yang YP, Pan JJ, Wang H, et al. Tislelizumab plus chemotherapy as first-line treatment for recurrent or metastatic nasopharyngeal cancer: a multicenter phase 3 trial (RATIONALE-309)[J]. Cancer Cell, 2023, In press. DOI: 10.1016/j.ccell.2023.04.014.
doi: 10.1016/j.ccell.2023.04.014 |
[39] |
Yang YP, Zhao YY, Zhou T, et al. A phase Ⅰb study of SHR-1701, a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with recurrent or metastatic nasopharyngeal carcinoma (RM-NPC)[J]. J Clin Oncol, 2022, 40(16_suppl): 6024. DOI: 10.1200/JCO.2022.40.16_suppl.6024.
doi: 10.1200/JCO.2022.40.16_suppl.6024 |
[1] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[2] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[3] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[4] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[5] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[6] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[7] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智. CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. |
[8] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[9] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[10] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[11] | 解淑萍, 孙亚红, 汪超. 早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[12] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[13] | 崔腾璐, 吕璐, 孙鹏飞. 放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
[14] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏. 免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. |
[15] | 邓隽军, 赵大勇, 李淼. 免疫检查点抑制剂在非小细胞肺癌治疗中的不良反应及危险因素[J]. 国际肿瘤学杂志, 2023, 50(9): 564-568. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||