[1] |
Katsaounou K, Nicolaou E, Vogazianos P, et al. Colon cancer: from epidemiology to prevention[J]. Metabolites, 2022, 12(6): 499. DOI: 10.3390/metabo12060499.
|
[2] |
Li J, Chen D, Shen M. Tumor microenvironment shapes colorectal cancer progression, metastasis, and treatment responses[J]. Front Med (Lausanne), 2022, 9: 869010. DOI: 10.3389/fmed.2022.869010.
|
[3] |
Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression[J]. J Biomed Sci, 2019, 26(1): 78. DOI: 10.1186/s12929-019-0568-z.
pmid: 31629410
|
[4] |
Li J, Li L, Li Y, et al. Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis[J]. Int J Colorectal Dis, 2020, 35(7): 1203-1210. DOI: 10.1007/s00384-020-03593-z.
pmid: 32303831
|
[5] |
Yin Y, Liu B, Cao Y, et al. Colorectal cancer-derived small extracellular vesicles promote tumor immune evasion by upregulating PD-L1 expression in tumor-associated macrophages[J]. Adv Sci (Weinh), 2022, 9(9): 2102620. DOI: 10.1002/advs.202102620.
|
[6] |
Li C, Xu X, Wei S, et al. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer[J]. J Immunother Cancer, 2021, 9(1): e001341. DOI: 10.1136/jitc-2020-001341.
|
[7] |
Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995. DOI: 10.3390/ijms22136995.
|
[8] |
Wu K, Lin K, Li X, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11: 1731. DOI: 10.3389/fimmu.2020.01731.
pmid: 32849616
|
[9] |
Zhou J, Tang Z, Gao S, et al. Tumor-associated macrophages: recent insights and therapies[J]. Front Oncol, 2020, 10: 188. DOI: 10.3389/fonc.2020.00188.
pmid: 32161718
|
[10] |
Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61. DOI: 10.1016/j.immuni.2014.06.010.
pmid: 25035953
|
[11] |
Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084. DOI: 10.3389/fimmu.2020.583084.
|
[12] |
Jeong H, Kim S, Hong BJ, et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis[J]. Cancer Res, 2019, 79(4): 795-806. DOI: 10.1158/0008-5472.CAN-18-2545.
pmid: 30610087
|
[13] |
Lan Q, Lai W, Zeng Y, et al. CCL26 participates in the PRL-3-induced promotion of colorectal cancer invasion by stimulating tumor-associated macrophage infiltration[J]. Mol Cancer Ther, 2018, 17(1): 276-289. DOI: 10.1158/1535-7163.MCT-17-0507.
pmid: 29051319
|
[14] |
Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J]. Cell Death Dis, 2019, 10(11): 829. DOI: 10.1038/s41419-019-2077-0.
|
[15] |
Huang C, Ou R, Chen X, et al. Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC[J]. J Exp Clin Cancer Res, 2021, 40(1): 304. DOI: 10.1186/s13046-021-02108-0.
pmid: 34583750
|
[16] |
Zhong Q, Fang Y, Lai Q, et al. CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling[J]. J Exp Clin Cancer Res, 2020, 39(1): 132. DOI: 10.1186/s13046-020-01637-4.
pmid: 32653013
|
[17] |
Liu C, Zhang W, Wang J, et al. Tumor-associated macrophage-derived transforming growth factor-β promotes colorectal cancer progression through HIF1-TRIB3 signaling[J]. Cancer Sci, 2021, 112(10): 4198-4207. DOI: 10.1111/cas.15101.
|
[18] |
Li X, Liu R, Su X, et al. Harnessing tumor-associated macrophages as aids for cancer immunotherapy[J]. Mol Cancer, 2019, 18(1): 177. DOI: 10.1186/s12943-019-1102-3.
pmid: 31805946
|
[19] |
Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer[J]. Nat Rev Drug Discov, 2018, 17(12): 887-904. DOI: 10.1038/nrd.2018.169.
pmid: 30361552
|
[20] |
Chun E, Lavoie S, Michaud M, et al. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function[J]. Cell Rep, 2015, 12(2): 244-257. DOI: 10.1016/j.celrep.2015.06.024.
pmid: 26146082
|
[21] |
Tu MM, Abdel-Hafiz HA, Jones RT, et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy[J]. Commun Biol, 2020, 3(1): 720. DOI: 10.1038/s42003-020-01441-y.
pmid: 33247183
|
[22] |
Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models[J]. Cancer Res, 2014, 74(18): 5057-5069. DOI: 10.1158/0008-5472.CAN-13-3723.
pmid: 25082815
|
[23] |
Cassier PA, Garin G, Eberst L, et al. MEDIPLEX: a phase 1 study of durvalumab (D) combined with pexidartinib (P) in patients (pts) with advanced pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC)[J]. J Clin Oncol, 2019, 37(15 suppl): 2579. DOI: 10.1200/JCO.2019.37.15_suppl.2579.
|
[24] |
Haag GM, Springfeld C, Grün B, et al. Pembrolizumab and maraviroc in refractory mismatch repair proficient/microsatellite-stable metastatic colorectal cancer-the PICCASSO phase I trial[J]. Eur J Cancer, 2022, 167: 112-122. DOI: 10.1016/j.ejca.2022.03.017.
|
[25] |
De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells[J]. Nature, 2016, 539(7629): 443-447. DOI: 10.1038/nature20554.
|
[26] |
Heller S, Glaeske S, Gluske K, et al. Pan-PI3K inhibition with copanlisib overcomes Treg- and M2-TAM-mediated immune suppression and promotes anti-tumor immune responses[J]. Clin Exp Med, 2023, 23(8): 5445-5461.
doi: 10.1007/s10238-023-01227-6
|
[27] |
Tauriello DVF, Palomo-Ponce S, Stork D, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis[J]. Nature, 2018, 554(7693):538-543. DOI: 10.1038/nature 25492.
|
[28] |
Zha H, Wang X, Zhu Y, et al. Intracellular activation of complement C3 leads to PD-L1 antibody treatment resistance by modula-ting tumor-associated macrophages[J]. Cancer Immunol Res, 2019, 7(2): 193-207. DOI: 10.1158/2326-6066.CIR-18-0272.
|
[29] |
Wen ZF, Liu H, Gao R, et al. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1[J]. J Immunother Cancer, 2018, 6(1): 151. DOI: 10.1186/s40425-018-0452-5.
|
[30] |
Kou Y, Li Z, Sun Q, et al. Prognostic value and predictive biomarkers of phenotypes of tumour-associated macrophages in colorectal cancer[J]. Scand J Immunol, 2022, 95(4): e13137. DOI: 10.1111/sji.13137.
|
[31] |
Xu G, Jiang L, Ye C, et al. The ratio of CD86+/CD163+ macrophages predicts postoperative recurrence in stage Ⅱ-Ⅲ colorectal cancer[J]. Front Immunol, 2021, 12:724429. DOI: 10.3389/fimmu.2021.724429.
|
[32] |
Zhao Y, Ge X, Xu X, et al. Prognostic value and clinicopathological roles of phenotypes of tumour-associated macrophages in colorectal cancer[J]. J Cancer Res Clin Oncol, 2019, 145(12): 3005-3019. DOI: 10.1007/s00432-019-03041-8.
pmid: 31650222
|
[33] |
Cavnar MJ, Turcotte S, Katz SC, et al. Tumor-associated macrophage infiltration in colorectal cancer liver metastases is associated with better outcome[J]. Ann Surg Oncol, 2017, 24(7): 1835-1842. DOI: 10.1245/s10434-017-5812-8.
pmid: 28213791
|
[34] |
Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499. DOI: 10.1038/nature22396.
|
[35] |
Bortolomeazzi M, Keddar MR, Montorsi L, et al. Immunogenomics of colorectal cancer response to checkpoint blockade: analysis of the KEYNOTE 177 trial and validation cohorts[J]. Gastroenterology, 2021, 161(4): 1179-1193. DOI: 10.1053/j.gastro.2021.06.064.
pmid: 34197832
|