[1] |
Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
|
[2] |
Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features[J]. Radiology, 2021, 299(2): E256. DOI: 10.1148/radiol.2021219005.
pmid: 33900879
|
[3] |
Wu J, Gensheimer MF, Zhang NS, et al. Tumor subregion evolution-based imaging features to assess early response and predict prognosis in oropharyngeal cancer[J]. J Nucl Med, 2020, 61(3): 327-336. DOI: 10.2967/jnumed.119.230037.
|
[4] |
Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging[J]. Clin Radiol, 2017, 72(1): 3-10. DOI: 10.1016/j.crad.2016.09.013.
pmid: 27742105
|
[5] |
Fahridzadeh H, Chaudhury B, Scott JG, et al. Signal intensity analysis of ecological defined habitat in soft tissue sarcomas to predict metastasis development[C]// Proceedings Volume 9785, Medical Imaging 2016:Computer-Aided Diagnosis. San Diego: SPIE, 2016: 97851H. DOI: 10.1117/12.2216961.
|
[6] |
何瀚志, 朱红, 王竞. 基于聚类分析的医学图像分割综述[J]. 中国科技信息, 2017 (15): 43, 46. DOI: 10.3969/j.issn.1001-8972.2017.15.013.
|
[7] |
Lee DH, Park JE, Kim NY, et al. Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery[J]. Eur Radiol, 2022, 32(1): 497-507. DOI: 10.1007/s00330-021-08204-1.
|
[8] |
Schmitz J, Schwab J, Schwenck J, et al. Decoding intratumoral heterogeneity of breast cancer by multiparametric in vivo imaging: a translational study[J]. Cancer Res, 2016, 76(18): 5512-5522. DOI: 10.1158/0008-5472.CAN-15-0642.
pmid: 27466286
|
[9] |
王微. 多模态磁共振定量评估早期宫颈癌组织学危险因素及复发风险分层的研究[D]. 长春: 吉林大学, 2023. DOI: 10.27162/d.cnki.gjlin.2023.000311.
|
[10] |
Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study[J]. Lancet Oncol, 2018, 19(9): 1180-1191. DOI: 10.1016/S1470-2045(18)30413-3.
pmid: 30120041
|
[11] |
Jeong SY, Park JE, Kim N, et al. Hypovascular cellular tumor in primary central nervous system lymphoma is associated with treatment resistance: tumor habitat analysis using physiologic MRI[J]. AJNR Am J Neuroradiol, 2022, 43(1): 40-47. DOI: 10.3174/ajnr.A7351.
|
[12] |
Beer L, Martin-Gonzalez P, Delgado-Ortet M, et al. Ultrasound-guided targeted biopsies of CT-based radiomic tumour habitats: technical development and initial experience in metastatic ovarian cancer[J]. Eur Radiol, 2021, 31(6): 3765-3772. DOI: 10.1007/s00330-020-07560-8.
|
[13] |
娄潇方, 范明, 许茂盛, 等. 基于多参数磁共振影像组学的乳腺癌病理信息预测模型研究[J]. 中国生物医学工程学报, 2020, 39(5): 513-523. DOI: 10.3969/j.issn.0258-8021.2020.05.001.
|
[14] |
Rabasco P, Caivano R, Simeon V, et al. Can diffusion-weighted imaging and related apparent diffusion coefficient be a prognostic value in women with breast cancer?[J]. Cancer Invest, 2017, 35(2): 92-99. DOI: 10.1080/07357907.2016.1267740.
pmid: 28107084
|
[15] |
Girard A, Le Reste PJ, Metais A, et al. Combining 18F-DOPA PET and MRI with perfusion-weighted imaging improves delineation of high-grade subregions in enhancing and non-enhancing gliomas prior treatment: a biopsy-controlled study[J]. J Neurooncol, 2021, 155(3): 287-295. DOI: 10.1007/s11060-021-03873-w.
|
[16] |
Prasanna P, Patel J, Partovi S, et al. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings[J]. Eur Radiol, 2017, 27(10): 4188-4197. DOI: 10.1007/s00330-016-4637-3.
pmid: 27778090
|
[17] |
Yang Y, Han Y, Zhao SJ, et al. Spatial heterogeneity of edema region uncovers survival-relevant habitat of glioblastoma[J]. Eur J Radiol, 2022, 154: 110423. DOI: 10.1016/j.ejrad.2022.110423.
|
[18] |
Braman NM, Etesami M, Prasanna P, et al. Erratum to: intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J]. Breast Cancer Res, 2017, 19(1): 80. DOI: 10.1186/s13058-017-0862-1.
pmid: 28693537
|
[19] |
Xie CY, Yang PF, Zhang XB, et al. Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy[J]. EBioMedicine, 2019, 44: 289-297. DOI: 10.1016/j.ebiom.2019.05.023.
pmid: 31129097
|
[20] |
Citrin DE. Recent developments in radiotherapy[J]. N Engl J Med, 2017, 377(11): 1065-1075. DOI: 10.1056/NEJMra1608986.
|
[21] |
Deutsch E, Chargari C, Galluzzi L, et al. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy[J]. Lancet Oncol, 2019, 20(8): e452-e463. DOI: 10.1016/S1470-2045(19)30171-8.
|
[22] |
John F, Bosnyák E, Robinette NL, et al. Multimodal imaging-defined subregions in newly diagnosed glioblastoma: impact on overall survival[J]. Neuro Oncol, 2019, 21(2): 264-273. DOI: 10.1093/neuonc/noy169.
|
[23] |
Parker JG, Servati M, Diller EE, et al. Targeting intra-tumoral heterogeneity of human brain tumors with in vivo imaging: a roadmap for imaging genomics from multiparametric MR signals[J]. Med Phys, 2023, 50(4): 2590-2606. DOI: 10.1002/mp.16059.
|
[24] |
Shankar LK, Schöder H, Sharon E, et al. Harnessing imaging tools to guide immunotherapy trials: summary from the National Cancer Institute Cancer Imaging Steering Committee workshop[J]. Lancet Oncol, 2023, 24(3): e133-e143. DOI: 10.1016/S1470-2045(22)00742-2.
|
[25] |
杨浩然, 马密密, 曹新山. 基于影像组学的肝细胞癌多中心研究进展[J]. 磁共振成像, 2021, 12(8): 101-103. DOI: 10.12015/issn.1674-8034.2021.08.023.
|
[26] |
Bernatowicz K, Grussu F, Ligero M, et al. Robust imaging habitat computation using voxel-wise radiomics features[J]. Sci Rep, 2021, 11(1): 20133. DOI: 10.1038/s41598-021-99701-2.
pmid: 34635786
|
[27] |
Juan-Albarracín J, Fuster-Garcia E, Pérez-Girbés A, et al. Glioblastoma: vascular habitats detected at preoperative dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging predict survival[J]. Radiology, 2018, 287(3): 944-954. DOI: 10.1148/radiol.2017170845.
pmid: 29357274
|
[28] |
Syed AK, Whisenant JG, Barnes SL, et al. Multiparametric analysis of longitudinal quantitative MRI data to identify distinct tumor habitats in preclinical models of breast cancer[J]. Cancers (Basel), 2020, 12(6): 1682. DOI: 10.3390/cancers12061682.
|
[29] |
Juan-Albarracín J, Fuster-Garcia E, García-Ferrando GA, et al. ONCOhabitats: a system for glioblastoma heterogeneity assessment through MRI[J]. Int J Med Inform, 2019, 128: 53-61. DOI: 10.1016/j.ijmedinf.2019.05.002.
pmid: 31160012
|