国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (1): 50-54.doi: 10.3760/cma.j.cn371439-20230227-00006
收稿日期:
2023-02-27
修回日期:
2023-11-20
出版日期:
2024-01-08
发布日期:
2024-01-23
通讯作者:
贾英杰
E-mail:jiayingjie1616@sina.com
Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie()
Received:
2023-02-27
Revised:
2023-11-20
Online:
2024-01-08
Published:
2024-01-23
Contact:
Jia Yingjie
E-mail:jiayingjie1616@sina.com
摘要:
髓源性抑制细胞(MDSC)作为一种免疫抑制细胞,是免疫微环境的重要组成部分,除了主要的促肿瘤免疫逃逸功能,近年研究发现,MDSC的促血管生成等非免疫学功能也能对肿瘤发展发挥促进作用。MDSC可通过血管内皮细胞生长因子信号通路直接促进肿瘤血管生成,也可通过分泌基质金属蛋白酶9、碱性成纤维细胞生长因子、血管生成肽Bv8、血小板衍生生长因子等细胞因子、外泌体或与其他细胞发生相互作用间接促进肿瘤生长和血管生成。探究MDSC的扩增活化、募集及促血管生成机制可为基于靶向MDSC的个体化诊疗提供新的思路。
刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54.
Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis[J]. Journal of International Oncology, 2024, 51(1): 50-54.
[1] | Vetsika EK, Koukos A, Kotsakis A. Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer[J]. Cells, 2019, 8(12): 1647. DOI: 10.3390/cells8121647. |
[2] |
Ouyang L, Dan Y, Shao Z, et al. MMP-sensitive PEG hydrogel modified with RGD promotes bFGF, VEGF and EPC-mediated angiogenesis[J]. Exp Ther Med, 2019, 18(4): 2933-2941. DOI: 10.3892/etm.2019.7885.
pmid: 31572536 |
[3] | Yuan XH, Yang J, Wang XY, et al. Association between EGFR/KRAS mutation and expression of VEGFA, VEGFR and VEGFR2 in lung adenocarcinoma[J]. Oncol Lett, 2018, 16(2): 2105-2112. DOI: 10.3892/ol.2018.8901. |
[4] | Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angio-poietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions[J]. Int J Biol Macromol, 2022, 221: 1428-1438. DOI: 10.1016/j.ijbiomac.2022.09.129. |
[5] |
Wang D, Xu Y, Feng L, et al. RGS5 decreases the proliferation of human ovarian carcinoma‑derived primary endothelial cells through the MAPK/ERK signaling pathway in hypoxia[J]. Oncol Rep, 2019, 41(1): 165-177. DOI: 10.3892/or.2018.6811.
pmid: 30365142 |
[6] | Garnier L, Pick R, Montorfani J, et al. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis[J]. Sci Adv, 2022, 8(23): eabl5162. DOI: 10.1126/sciadv.abl5162. |
[7] | Cole K, Pravoverov K, Talmadge JE. Role of myeloid-derived suppressor cells in metastasis[J]. Cancer Metastasis Rev, 2021, 40(2): 391-411. DOI: 10.1007/s10555-020-09947-x. |
[8] |
Nourbakhsh E, Mohammadi A, Salemizadeh Parizi M, et al. Role of myeloid-derived suppressor cell (MDSC) in autoimmunity and its potential as a therapeutic target[J]. Inflammopharmacology, 2021, 29(5): 1307-1315. DOI: 10.1007/s10787-021-00846-3.
pmid: 34283371 |
[9] |
Weber R, Fleming V, Hu X, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors[J]. Front Immunol, 2018, 9: 1310. DOI: 10.3389/fimmu.2018.01310.
pmid: 29942309 |
[10] | Wu C, Tan X, Hu X, et al. Tumor microenvironment following gemcitabine treatment favors differentiation of immunosuppressive Ly6Chigh myeloid cells[J]. J Immunol, 2020, 204(1): 212-223. DOI: 10.4049/jimmunol.1900930. |
[11] |
Aarts CEM, Hiemstra IH, Furumaya C, et al. Different MDSC activity of G-CSF/dexamethasone mobilized neutrophils: benefits to the patient?[J]. Front Oncol, 2020, 10: 1110. DOI: 10.3389/fonc.2020.01110.
pmid: 32793476 |
[12] |
Alfaro C, Teijeira A, Oñate C, et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs)[J]. Clin Cancer Res, 2016, 22(15): 3924-3936. DOI: 10.1158/1078-0432.CCR-15-2463.
pmid: 26957562 |
[13] | Gneo L, Rizkalla N, Hejmadi R, et al. TGF-β orchestrates the phenotype and function of monocytic myeloid-derived suppressor cells in colorectal cancer[J]. Cancer Immunol Immunother, 2022, 71(7): 1583-1596. DOI: 10.1007/s00262-021-03081-5. |
[14] | Aggen DH, Ager CR, Obradovic AZ, et al. Blocking IL1 β promotes tumor regression and remodeling of the myeloid compartment in a renal cell carcinoma model: multidimensional analyses[J]. Clin Cancer Res, 2021, 27(2): 608-621. DOI: 10.1158/1078-0432.CCR-20-1610. |
[15] | Lee JY, Sohn HJ, Kim CH, et al. Local and systemic injections of human cord blood myeloid-derived suppressor cells to prevent graft rejection in corneal transplantation[J]. Biomedicines, 2022, 10(12): 3223. DOI: 10.3390/biomedicines10123223. |
[16] |
Guan X, Liu Z, Zhang J, et al. Myeloid-derived suppressor cell accumulation in renal cell carcinoma is correlated with CCL2, IL-17 and IL-18 expression in blood and tumors[J]. Adv Clin Exp Med, 2018, 27(7): 947-953. DOI: 10.17219/acem/70065.
pmid: 29905412 |
[17] | 申加兴, 张珊, 陈祥静, 等. TGF-β诱导肺脏癌相关成纤维细胞高表达IL-17D并促进MDSC募集[J]. 国际肿瘤学杂志, 2021, 48(5): 275-281. DOI: 10.3760/cma.j.cn371439-20210115-00053. |
[18] | Weber R, Groth C, Lasser S, et al. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy[J]. Cell Immunol, 2021, 359: 104254. DOI: 10.1016/j.cellimm.2020.104254. |
[19] | Shi H, Qin Y, Tian Y, et al. Interleukin-1β triggers the expansion of circulating granulocytic myeloid-derived suppressor cell subset dependent on Erk1/2 activation[J]. Immunobiology, 2022, 227(1): 152165. DOI: 10.1016/j.imbio.2021.152165. |
[20] | Chouaib S, Umansky V, Kieda C. The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment[J]. Contemp Oncol (Pozn), 2018, 22(1A): 7-13. DOI: 10.5114/wo.2018.73874. |
[21] |
Guo X, Qiu W, Wang J, et al. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways[J]. Int J Cancer, 2019, 144(12): 3111-3126. DOI: 10.1002/ijc.32052.
pmid: 30536597 |
[22] | 崔维刚, 时会芳, 张敏, 等. 髓源性抑制细胞在肿瘤微环境中作用的研究进展[J]. 中国医药, 2022, 17(10): 1592-1596. DOI: 10.3760/j.issn.1673-4777.2022.10.035. |
[23] |
Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity[J]. Front Immunol, 2018, 9: 978. DOI: 10.3389/fimmu.2018.00978.
pmid: 29774034 |
[24] |
Horikawa N, Abiko K, Matsumura N, et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells[J]. Clin Cancer Res, 2017, 23(2): 587-599. DOI: 10.1158/1078-0432.CCR-16-0387.
pmid: 27401249 |
[25] | Bauer R, Udonta F, Wroblewski M, et al. Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of antiangiogenic therapy[J]. Cancer Res, 2018, 78(12): 3220-3232. DOI: 10.1158/0008-5472.CAN-17-3415. |
[26] |
Bruno A, Mortara L, Baci D, et al. Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor progression[J]. Front Immunol, 2019, 10: 771. DOI: 10.3389/fimmu.2019.00771.
pmid: 31057536 |
[27] | Su YL, Banerjee S, White SV, et al. STAT3 in tumor-associated myeloid cells: multitasking to disrupt immunity[J]. Int J Mol Sci, 2018, 19(6): 1803. DOI: 10.3390/ijms19061803. |
[28] | Itatani Y, Kawada K, Yamamoto T, et al. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway[J]. Int J Mol Sci, 2018, 19(4): 1232. DOI: 10.3390/ijms19041232. |
[29] |
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485-498. DOI: 10.1038/s41577-020-00490-y.
pmid: 33526920 |
[30] |
Fahey E, Doyle SL. IL-1 family cytokine regulation of vascular permeability and angiogenesis[J]. Front Immunol, 2019, 10: 1426. DOI: 10.3389/fimmu.2019.01426.
pmid: 31293586 |
[31] | Hsu YL, Yen MC, Chang WA, et al. CXCL17-derived CD11b+Gr-1+ myeloid-derived suppressor cells contribute to lung metastasis of breast cancer through platelet-derived growth factor-BB[J]. Breast Cancer Res, 2019, 21(1): 23. DOI: 10.1186/s13058-019-1114-3. |
[32] |
Duhan V, Smyth MJ. Innate myeloid cells in the tumor microenvironment[J]. Curr Opin Immunol, 2021, 69: 18-28. DOI: 10.1016/j.coi.2021.01.001.
pmid: 33588308 |
[33] | Fu LQ, Du WL, Cai MH, et al. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis[J]. Cell Immunol, 2020, 353: 104119. DOI: 10.1016/j.cellimm.2020.104119. |
[34] | Zhang N, Gao X, Zhang W, et al. JEV infection induces M-MDSC differentiation into CD3+ macrophages in the brain[J]. Front Immunol, 2022, 13: 838990. DOI: 10.3389/fimmu.2022.838990. |
[35] |
Hossain F, Majumder S, Ucar DA, et al. Notch signaling in myeloid cells as a regulator of tumor immune responses[J]. Front Immunol, 2018, 9: 1288. DOI: 10.3389/fimmu.2018.01288.
pmid: 29915603 |
[36] | Mortezaee K. Myeloid-derived suppressor cells in cancer immuno-therapy-clinical perspectives[J]. Life Sci, 2021, 277: 119627. DOI: 10.1016/j.lfs.2021.119627. |
[37] | Astarita JL, Dominguez CX, Tan C, et al. Treg specialization and functions beyond immune suppression[J]. Clin Exp Immunol, 2023, 211(2): 176-183. DOI: 10.1093/cei/uxac123. |
[38] | Sammarco G, Varricchi G, Ferraro V, et al. Mast cells, angio-genesis and lymphangiogenesis in human gastric cancer[J]. Int J Mol Sci, 2019, 20(9): 2106. DOI: 10.3390/ijms20092106. |
[39] |
Geis-Asteggiante L, Belew AT, Clements VK, et al. Differential content of proteins, mRNAs, and miRNAs suggests that MDSC and their exosomes may mediate distinct immune suppressive functions[J]. J Proteome Res, 2018, 17(1): 486-498. DOI: 10.1021/acs.jproteome.7b00646.
pmid: 29139296 |
[40] |
Zöller M. Janus-faced myeloid-derived suppressor cell exosomes for the good and the bad in cancer and autoimmune disease[J]. Front Immunol, 2018, 9: 137. DOI: 10.3389/fimmu.2018.00137.
pmid: 29456536 |
[41] | Wang Y, Yin K, Tian J, et al. Granulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9[J]. Adv Sci (Weinh), 2019, 6(18): 1901278. |
[42] |
Zhong X, Xie F, Chen L, et al. S100A8 and S100A9 promote endothelial cell activation through the RAGE‑mediated mammalian target of rapamycin complex 2 pathway[J]. Mol Med Rep, 2020, 22(6): 5293-5303. DOI: 10.3892/mmr.2020.11595.
pmid: 33174028 |
[43] | Liu Q, Peng F, Chen J. The role of exosomal microRNAs in the tumor microenvironment of breast cancer[J]. Int J Mol Sci, 2019, 20(16): 3884. DOI: 10.3390/ijms20163884. |
[1] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[2] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[3] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[4] | 潘书兰, 刘畅, 贺平. 福瑞替尼对三阴性乳腺癌血管生成、肿瘤生长及IRE1-ASK1-JNK通路的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 457-462. |
[5] | 张渊, 白芷玉, 李琪, 冯勤梅. 外泌体在恶性肿瘤中的研究现状[J]. 国际肿瘤学杂志, 2023, 50(8): 484-488. |
[6] | 刘砚萤, 杨宇. 血管生成素样蛋白4在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2023, 50(6): 348-351. |
[7] | 许萌, 姜伟, 朱海涛, 曹雄锋. 癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. |
[8] | 丁浩, 应劲涛, 付茂勇. CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235. |
[9] | 曹梦清, 徐志勇, 施毓婷, 王凯. 三级淋巴结构在肿瘤免疫微环境调节和抗肿瘤治疗中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 169-173. |
[10] | 徐良富, 李袁飞. MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[11] | 朱易, 陈健. 硫化氢在肿瘤发生发展中的作用机制及其供体抗肿瘤作用[J]. 国际肿瘤学杂志, 2023, 50(12): 729-733. |
[12] | 谢露露, 丁江华. 免疫治疗在晚期三阴性乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(11): 672-676. |
[13] | 陶红, 殷红, 罗宏, 陶佳瑜. 靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[14] | 马雪艳, 鲁历历, 孙鹏飞. 免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50. |
[15] | 吴嘉钰, 刘加成. 孤立性磨玻璃结节样肺腺癌的影像组学研究进展[J]. 国际肿瘤学杂志, 2022, 49(8): 449-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||