国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (8): 484-488.doi: 10.3760/cma.j.cn371439-20230315-00092
收稿日期:
2023-03-15
修回日期:
2023-04-11
出版日期:
2023-08-08
发布日期:
2023-10-24
通讯作者:
冯勤梅
E-mail:qmf369@hotmail.com
Zhang Yuan1, Bai Zhiyu1, Li Qi1, Feng Qinmei2()
Received:
2023-03-15
Revised:
2023-04-11
Online:
2023-08-08
Published:
2023-10-24
Contact:
Feng Qinmei
E-mail:qmf369@hotmail.com
摘要:
外泌体是一种由大多数真核细胞分泌的膜性囊泡,其直径为30~150 nm,含有与其功能及起源密切相关的RNA、蛋白质及脂质,在细胞之间信息交流中发挥重要作用。其可通过促进肿瘤细胞的增殖及迁移、改善肿瘤微环境、抑制免疫反应等途径促进肿瘤的进展。此外,外泌体在某些肿瘤中表达水平较高,可作为肿瘤的预测因子,用于肿瘤的早期诊断;也可作为载体,携带靶向药物到达肿瘤局部,发挥抑癌作用。
张渊, 白芷玉, 李琪, 冯勤梅. 外泌体在恶性肿瘤中的研究现状[J]. 国际肿瘤学杂志, 2023, 50(8): 484-488.
Zhang Yuan, Bai Zhiyu, Li Qi, Feng Qinmei. Current status of research on exosomes in malignancies[J]. Journal of International Oncology, 2023, 50(8): 484-488.
[1] |
Pan BT, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes[J]. J Cell Biol, 1985, 101(3): 942-948. DOI: 10.1083/jcb.101.3.942.
pmid: 2993317 |
[2] | Zhu L, Sun HT, Wang S, et al. Isolation and characterization of exosomes for cancer research[J]. J Hematol Oncol, 2020, 13(1): 152. DOI: 10.1186/s13045-020-00987-y. |
[3] | Dai J, Su Y, Zhong S, et al. Exosomes: key players in cancer and potential therapeutic strategy[J]. Signal Transduct Target Ther, 2020, 5(1): 145. DOI: 10.1038/s41392-020-00261-0. |
[4] | Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 455-468. DOI: 10.1016/j.bbcan.2019.04.004. |
[5] | Wee I, Syn N, Sethi G, et al. Role of tumor-derived exosomes in cancer metastasis[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(1): 12-19. DOI: 10.1016/j.bbcan.2018.10.004. |
[6] | Gangoda L, Liem M, Ang CS, et al. Proteomic profiling of exosomes secreted by breast cancer cells with varying metastatic potential[J]. Proteomics, 2017, 17(23/24): 1600370. DOI: 10.1002/pmic.201600370. |
[7] |
Li Z, Yanfang W, Li J, et al. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/Met pathway in pancreatic cancer[J]. Cancer Lett, 2018, 432: 237-250. DOI: 10.1016/j.canlet.2018.04.035.
pmid: 29709702 |
[8] |
Zhang W, Zheng X, Yu Y, et al. Renal cell carcinoma-derived exosomes deliver lncARSR to induce macrophage polarization and promote tumor progression via STAT3 pathway[J]. Int J Biol Sci, 2022, 18(8): 3209-3222. DOI: 10.7150/ijbs.70289.
pmid: 35637970 |
[9] |
Fu Q, Zhang Q, Lou Y, et al. Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via SMAD3 in liver cancer[J]. Oncogene, 2018, 37(47): 6105-6118. DOI: 10.1038/s41388-018-0391-0.
pmid: 29991801 |
[10] | 黎娜, 罗丽, 杨雅婷, 等. 胶质母细胞瘤外泌体的作用机制研究进展[J]. 生物工程学报, 2023, 39(04):1477-1501. DOI: 10.13345/j.cjb.220777. |
[11] |
Quezada C, Torres Á, Niechi I, et al. Role of extracellular vesicles in glioma progression[J]. Mol Aspects Med, 2018, 60: 38-51. DOI: 10.1016/j.mam.2017.12.003.
pmid: 29222067 |
[12] |
Nieland L, Morsett LM, Broekman MLD, et al. Extracellular vesicle-mediated bilateral communication between glioblastoma and astrocytes[J]. Trends Neurosci, 2021, 44(3): 215-226. DOI: 10.1016/j.tins.2020.10.014.
pmid: 33234347 |
[13] |
Abels ER, Maas SLN, Nieland L, et al. Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21[J]. Cell Rep, 2019, 28(12): 3105-3119.e7. DOI: 10.1016/j.celrep.2019.08.036.
pmid: 31533034 |
[14] | Cai Q, Zhu A, Gong L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1[J]. Bull Cancer, 2018, 105(7/8): 643-651. DOI: 10.1016/j.bulcan.2018.05.003. |
[15] |
Yang F, Ning Z, Ma L, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts[J]. Mol Cancer, 2017, 16(1): 148. DOI: 10.1186/s12943-017-0718-4.
pmid: 28851377 |
[16] |
Thuringer D, Chanteloup G, Boucher J, et al. Modulation of the inwardly rectifying potassium channel Kir4.1 by the pro-invasive miR-5096 in glioblastoma cells[J]. Oncotarget, 2017, 8(23): 37681-37693. DOI: 10.18632/oncotarget.16949.
pmid: 28445150 |
[17] | Wang S, Jiang G, Wang S,. Neuroprotective role of vniRNA-9 in neurological diseases: a mini review[J/OL]. Curr Mol Med. [2022-10-25][2023-03-13]. https://pubmed.ncbi.nlm.nih.gov/36284391/. DOI: 10.2174/1566524023666221025123132. |
[18] |
Wang X, Cao Q, Shi Y, et al. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in glioblastoma progression and radioresistance: functional validation and clinical theranostic significance[J]. Int J Biol Sci, 2021, 17(4): 1061-1078. DOI: 10.7150/ijbs.57168.
pmid: 33867829 |
[19] |
Monfared H, Jahangard Y, Nikkhah M, et al. Potential therapeutic effects of exosomes packed with a miR-21-sponge construct in a rat model of glioblastoma[J]. Front Oncol, 2019, 9: 782. DOI: 10.3389/fonc.2019.00782.
pmid: 31482067 |
[20] | Xue P, Huang S, Han X, et al. Exosomal miR-101-3p and miR-423-5p inhibit medulloblastoma tumorigenesis through targeting FOXP4 and EZH2[J]. Cell Death Differ, 2022, 29(1): 82-95. DOI: 10.1038/s41418-021-00838-4. |
[21] | Park J, Cho M, Cho J, et al. MicroRNA-101-3p suppresses cancer cell growth by inhibiting the USP47-induced deubiquitination of RPL11[J]. Cancers (Basel), 2022, 14(4): 964. DOI: 10.3390/cancers14040964. |
[22] | Kok VC, Yu CC. Cancer-derived exosomes: their role in cancer biology and biomarker development[J]. Int J Nanomedicine, 2020, 15: 8019-8036. DOI: 10.2147/IJN.S272378. |
[23] |
Lan J, Sun L, Xu F, et al. M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer[J]. Cancer Res, 2019, 79(1): 146-158. DOI: 10.1158/0008-5472.CAN-18-0014.
pmid: 30401711 |
[24] | Liu G, Ouyang X, Sun Y, et al. The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/β-catenin signaling[J]. Cell Death Differ, 2020, 27(12): 3258-3272. DOI: 10.1038/s41418-020-0575-3. |
[25] |
VanderVorst K, Dreyer CA, Konopelski SE, et al. Wnt/PCP signa-ling contribution to carcinoma collective cell migration and metastasis[J]. Cancer Res, 2019, 79(8): 1719-1729. DOI: 10.1158/0008-5472.CAN-18-2757.
pmid: 30952630 |
[26] |
Zhang H, Deng T, Liu R, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis[J]. Nat Commun, 2017, 8: 15016. DOI: 10.1038/ncomms15016.
pmid: 28393839 |
[27] |
Lakshmi S, Hughes TA, Priya S. Exosomes and exosomal RNAs in breast cancer: a status update[J]. Eur J Cancer, 2021, 144: 252-268. DOI: 10.1016/j.ejca.2020.11.033.
pmid: 33373870 |
[28] | Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome inte-grins determine organotropic metastasis[J]. Nature, 2015, 527(7578): 329-335. DOI: 10.1038/nature15756. |
[29] | Sun H, Meng Q, Shi C, et al. Hypoxia-inducible exosomes facilitate liver-tropic premetastatic niche in colorectal cancer[J]. Hepatology, 2021, 74(5): 2633-2651. DOI: 10.1002/hep.32009. |
[30] | Chen HL, Li JJ, Jiang F, et al. MicroRNA-4461 derived from bone marrow mesenchymal stem cell exosomes inhibits tumorigenesis by downregulating COPB2 expression in colorectal cancer[J]. Biosci Biotechnol Biochem, 2020, 84(2): 338-346. DOI: 10.1080/09168451.2019.1677452. |
[31] | 杜坤, 汪兵, 杨盛荣, 等. 骨髓间充质干细胞外泌体miR-126-3p靶向CCR1抑制非小细胞肺癌细胞恶性增殖及转移[J]. 西安交通大学学报(医学版), 2023, 44(2): 189-194. DOI: 10.7652/jdyxb202302006. |
[32] | Shimizu A, Sawada K, Kimura T. Pathophysiological role and potential therapeutic exploitation of exosomes in ovarian cancer[J]. Cells, 2020, 9(4): 814. DOI: 10.3390/cells9040814. |
[33] |
Shao Y, Chen T, Zheng X, et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis[J]. Carcinogenesis, 2018, 39(11): 1368-1379. DOI: 10.1093/carcin/bgy115.
pmid: 30184100 |
[34] | Chen L, Huang H, Zhang W, et al. Exosomes derived from T regulatory cells suppress CD8+ cytotoxic T lymphocyte proliferation and prolong liver allograft survival[J]. Med Sci Monit, 2019, 25: 4877-4884. DOI: 10.12659/MSM.917058. |
[35] |
Hui E, Cheung J, Zhu J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition[J]. Science, 2017, 355(6332): 1428-1433. DOI: 10.1126/science.aaf1292.
pmid: 28280247 |
[36] | Zhou Y, Zhang Y, Gong H, et al. The role of exosomes and their applications in cancer[J]. Int J Mol Sci, 2021, 22(22): 12204. DOI: 10.3390/ijms222212204. |
[37] | Mao Y, Wang Y, Dong L, et al. Circulating exosomes from esophageal squamous cell carcinoma mediate the generation of B10 and PD-1high Breg cells[J]. Cancer Sci, 2019, 110(9): 2700-2710. DOI: 10.1111/cas.14122. |
[38] | Zhou W, Zhou Y, Chen X, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment[J]. 2021, 268: 120546. DOI: 10.1016/j.biomaterials.2020.120546. |
[39] | Ye L, Zhang Q, Cheng Y, et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion[J]. J Immunother Cancer, 2018, 6(1): 145. DOI: 10.1186/s40425-018-0451-6. |
[40] |
Lv LH, Wan YL, Lin Y, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro[J]. J Biol Chem, 2012, 287(19): 15874-15885. DOI: 10.1074/jbc.M112.340588.
pmid: 22396543 |
[41] | Li D, Wang Y, Jin X, et al. NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice[J]. J Neuroinflammation, 2020, 17(1): 126. DOI: 10.1186/s12974-020-01787-4. |
[42] | Egorova A, Shubina A, Sokolov D, et al. CXCR4-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery[J]. Int J Pharm, 2016, 515(1/2): 431-440. DOI: 10.1016/j.ijpharm.2016.10.049. |
[43] | Du J, Liang Y, Li J, et al. Gastric cancer cell-derived exosomal microRNA-23a promotes angiogenesis by targeting PTEN[J]. Front Oncol, 2022, 10: 326. DOI: 10.3389/fonc.2020.00326. |
[44] | Chen Z, Xie Y, Chen W, et al. MicroRNA-6785-5p-loaded human umbilical cord mesenchymal stem cells-derived exosomes suppress angiogenesis and metastasis in gastric cancer via INHBA[J]. Life Sci, 2021, 284: 119222. DOI: 10.1016/j.lfs.2021.119222. |
[45] |
Ling X, Zhang G, Xia Y, et al. Exosomes from human urine-derived stem cells enhanced neurogenesis via miR-26a/HDAC6 axis after ischaemic stroke[J]. J Cell Mol Med, 2020, 24(1): 640-654. DOI: 10.1111/jcmm.14774.
pmid: 31667951 |
[46] | Elsharkawi F, Elsabah M, Shabayek M, et al. Urine and serum exosomes as novel biomarkers in detection of bladder cancer[J]. Asian Pac J Cancer Prev, 2019, 20(7): 2219-2224. DOI: 10.31557/APJCP.2019.20.7.2219. |
[47] | van der Watt PJ, Okpara MO, Wishart A, et al. Nuclear transport proteins are secreted by cancer cells and identified as potential novel cancer biomarkers[J]. Int J Cancer, 2022, 150(2): 347-361. DOI: 10.1002/ijc.33832. |
[48] |
Zheng M, Hou L, Ma Y, et al. Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors[J]. Mol Cancer, 2019, 18(1): 76. DOI: 10.1186/s12943-019-0999-x.
pmid: 30940131 |
[49] |
Luo X, Wei J, Yang FL, et al. Exosomal lncRNA HNF1A-AS1 affects cisplatin resistance in cervical cancer cells through regulating microRNA-34b/TUFT1 axis[J]. Cancer Cell Int, 2019, 19: 323. DOI: 10.1186/s12935-019-1042-4.
pmid: 31827397 |
[50] | Zhai LY, Li MX, Pan WL, et al. In situ detection of plasma exosomal microRNA-1246 for breast cancer diagnostics by a Au nanoflare probe[J]. ACS Appl Mater Interfaces, 2018, 10(46): 39478-39486. DOI: 10.1021/acsami.8b12725. |
[51] |
Santos JC, Lima NDS, Sarian LO, et al. Exosome-mediated breast cancer chemoresistance via miR-155 transfer[J]. Sci Rep, 2018, 8(1): 829. DOI: 10.1038/s41598-018-19339-5.
pmid: 29339789 |
[52] |
Raimondi L, De Luca A, Gallo A, et al. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs[J]. Carcinogenesis, 2020, 41(5): 666-677. DOI: 10.1093/carcin/bgz130.
pmid: 31294446 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[13] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||