国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (12): 729-733.doi: 10.3760/cma.j.cn371439-20230605-00137
收稿日期:
2023-06-05
修回日期:
2023-06-28
出版日期:
2023-12-08
发布日期:
2024-01-16
通讯作者:
陈健
E-mail:chen_jian818@163.com
Received:
2023-06-05
Revised:
2023-06-28
Online:
2023-12-08
Published:
2024-01-16
Contact:
Chen Jian
E-mail:chen_jian818@163.com
摘要:
硫化氢是人体内的一种气体信号分子,可影响血管新生,调控肿瘤细胞凋亡、自噬,且可与肿瘤微环境中其他信号分子相互作用,通过多种途径抑制肿瘤发生发展。硫化氢供体主要表现为抑制肿瘤进展,许多研究致力于使用各种供体、以平稳的方式释放硫化氢并维持在治疗浓度,传统中药有较大的应用前景。硫化氢作用方式复杂多样,尚需进一步的研究探讨证实,为调控硫化氢的治疗药物提供理论基础。
朱易, 陈健. 硫化氢在肿瘤发生发展中的作用机制及其供体抗肿瘤作用[J]. 国际肿瘤学杂志, 2023, 50(12): 729-733.
Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects[J]. Journal of International Oncology, 2023, 50(12): 729-733.
[1] |
Félétou M, Vanhoutte PM. EDHF: an update[J]. Clin Sci (Lond), 2009, 117(4): 139-155. DOI: 10.1042/CS20090096.
pmid: 19601928 |
[2] |
Szabo C. Gasotransmitters in cancer: from pathophysiology to experimental therapy[J]. Nat Rev Drug Discov, 2016, 15(3): 185-203. DOI: 10.1038/nrd.2015.1.
pmid: 26678620 |
[3] | Hellmich MR, Szabo C. Hydrogen sulfide and cancer[M]// MooreP K, WhitemanM. Chemistry, biochemistry and pharmacology of hydrogen sulfide. Cham: Springer, 2015: 233-241. DOI: 10.1007/978-3-319-18144-8_12. |
[4] | Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications[J]. Biochem Pharmacol, 2018, 149: 110-123. DOI: 10.1016/j.bcp.2017.11.014. |
[5] | Zaorska E, Tomasova L, Koszelewski D, et al. Hydrogen sulfide in pharmacotherapy, beyond the hydrogen sulfide-donors[J]. Biomo-lecules, 2020, 10(2): 323. DOI: 10.3390/biom10020323. |
[6] |
Zhen Y, Wu Q, Ding Y, et al. Exogenous hydrogen sulfide promotes hepatocellular carcinoma cell growth by activating the STAT3-COX-2 signaling pathway[J]. Oncol Lett, 2018, 15(5): 6562-6570. DOI: 10.3892/ol.2018.8154.
pmid: 29725404 |
[7] |
Youness RA, Gad AZ, Sanber K, et al. Targeting hydrogen sulphide signaling in breast cancer[J]. J Adv Res, 2021, 27: 177-190. DOI: 10.1016/j.jare.2020.07.006.
pmid: 33318876 |
[8] | Wahafu W, Gai J, Song L, et al. Increased H2S and its synthases in urothelial cell carcinoma of the bladder, and enhanced cisplatin-induced apoptosis following H2S inhibition in EJ cells[J]. Oncol Lett, 2018, 15(6): 8484-8490. DOI: 10.3892/ol.2018.8373. |
[9] | Xu S, Pan J, Cheng X, et al. Diallyl trisulfide, a H2S donor, inhibits cell growth of human papillary thyroid carcinoma KTC-1 cells through a positive feedback loop between H2S and cystathionine-gamma-lyase[J]. Phytother Res, 2020, 34(5): 1154-1165. DOI: 10.1002/ptr.6586. |
[10] | Lv B, Chen S, Tang C, et al. Hydrogen sulfide and vascular regulation—an update[J]. J Adv Res, 2021, 27: 85-97. DOI: 10.1016/j.jare.2020.05.007. |
[11] | Zhu C, Liu Q, Li X, et al. Hydrogen sulfide: a new therapeutic target in vascular diseases[J]. Front Endocrinol (Lausanne), 2022, 13: 934231. DOI: 10.3389/fendo.2022.934231. |
[12] | Ling K, Zhou W, Guo Y, et al. H2S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty[J]. Exp Biol Med (Maywood), 2021, 246(2): 226-239. DOI: 10.1177/1535370220961038. |
[13] | Li H, Wu R, Xi Y, et al. Dopamine 1 receptors inhibit apoptosis via activating CSE/H2S pathway in high glucose-induced vascular endothelial cells[J]. Cell Biol Int, 2022, 46(7): 1098-1108. DOI: 10.1002/cbin.11794. |
[14] |
Éva Sikura K, Combi Z, Potor L, et al. Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization[J]. J Adv Res, 2021, 27: 165-176. DOI: 10.1016/j.jare.2020.07.005.
pmid: 33318875 |
[15] |
Behera J, Kelly KE, Tyagi N. Hydrogen sulfide prevents ethanol-induced ZO-1 CpG promoter hypermethylation-dependent vascular permeability via miR-218/DNMT3a axis[J]. J Cell Physiol, 2021, 236(10): 6852-6867. DOI: 10.1002/jcp.30382.
pmid: 33855696 |
[16] | Marwah MK, Shokr H, Sanchez-Aranguren L, et al. Transdermal delivery of a hydrogen sulphide donor, ADT-OH using aqueous gel formulations for the treatment of impaired vascular function: an ex vivo study[J]. Pharm Res, 2022, 39(2): 341-352. DOI: 10.1007/s11095-021-03164-z. |
[17] | 谢淼, 陈善稳, 王鹏远. 内源性硫化氢在胃肠道肿瘤微环境中的作用和机制研究进展[J]. 中国现代普通外科进展, 2019, 22(11): 869-872. DOI: 10.3969/j.issn.1009-9905.2019.11.008. |
[18] | Wen X, Xi Y, Zhang Y, et al. Dr1 activation promotes vascular smooth muscle cell apoptosis via up-regulation of CSE/H2S pathway in diabetic mice[J]. FASEB J, 2022, 36(1): e22070. DOI: 10.1096/fj.202101455R. |
[19] | Zhang L, Jiang X, Liu N, et al. Exogenous H2S prevents the nuclear translocation of PDC-E1 and inhibits vascular smooth muscle cell proliferation in the diabetic state[J]. J Cell Mol Med, 2021, 25(17): 8201-8214. DOI: 10.1111/jcmm.16688. |
[20] |
Shuang T, Fu M, Yang G, et al. Interaction among estrogen, IGF-1, and H2S on smooth muscle cell proliferation[J]. J Endocrinol, 2021, 248(1): 17-30. DOI: 10.1530/JOE-20-0190.
pmid: 33112794 |
[21] |
Lignelli E, Palumbo F, Bayindir SG, et al. The H2S-generating enzyme 3-mercaptopyruvate sulfurtransferase regulates pulmonary vascular smooth muscle cell migration and proliferation but does not impact normal or aberrant lung development[J]. Nitric Oxide, 2021, 107: 31-45. DOI: 10.1016/j.niox.2020.12.002.
pmid: 33338600 |
[22] |
Mustafa AK, Sikka G, Gazi SK, et al. Hydrogen sulfide as endo-thelium-derived hyperpolarizing factor sulfhydrates potassium channels[J]. Circ Res, 2011, 109(11): 1259-1268. DOI: 10.1161/CIRCRESAHA.111.240242.
pmid: 21980127 |
[23] | Kan J, Guo W, Huang C, et al. S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3[J]. Antioxid Redox Signal, 2014, 20(15): 2303-2316. DOI: 10.1089/ars.2013.5449. |
[24] | Chen JJY, van der Vlies AJ, Hasegawa U. Hydrogen sulfide-releasing micelles for promoting angiogenesis[J]. Polym Chem, 2020, 11: 4454-4463. DOI: 10.1039/d0py00495b. |
[25] | Qi QR, Lechuga TJ, Patel B, et al. Enhanced stromal cell CBS-H2S production promotes estrogen-stimulated human endometrial angiogenesis[J]. Endocrinology, 2020, 161(11): bqaa176. DOI: 10.1210/endocr/bqaa176. |
[26] | Guo S, Li J, Huang Z, et al. The CBS-H2S axis promotes liver metastasis of colon cancer by upregulating VEGF through AP-1 activation[J]. Br J Cancer, 2022, 126(7): 1055-1066. DOI: 10.1038/s41416-021-01681-7. |
[27] | Wang D, Yang H, Zhang Y, et al. Inhibition of cystathionine β- synthase promotes apoptosis and reduces cell proliferation in chronic myeloid leukemia[J]. Signal Transduct Target Ther, 2021, 6(1): 52. DOI: 10.1038/s41392-020-00410-5. |
[28] | Wu D, Li J, Zhang Q, et al. Exogenous hydrogen sulfide regulates the growth of human thyroid carcinoma cells[J]. Oxid Med Cell Longev, 2019, 2019: 6927298. DOI: 10.1155/2019/6927298. |
[29] | Wang M, Yan J, Cao X, et al. Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1α activation[J]. Biochem Pharmacol, 2020, 172: 113775. DOI: 10.1016/j.bcp.2019.113775. |
[30] | Abdollahi Govar A, Törő G, Szaniszlo P, et al. 3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics[J]. Br J Pharmacol, 2020, 177(4): 866-883. DOI: 10.1111/bph.14574. |
[31] | Jiang X, MacArthur MR, Treviño-Villarreal JH, et al. Intracellular H2S production is an autophagy-dependent adaptive response to DNA damage[J]. Cell Chem Biol, 2021, 28(12): 1669-1678.e5. DOI: 10.1016/j.chembiol.2021.05.016. |
[32] | Ci L, Yang X, Gu X, et al. Cystathionine γ-lyase deficiency exa-cerbates CCl4-induced acute hepatitis and fibrosis in the mouse liver[J]. Antioxid Redox Signal, 2017, 27(3): 133-149. DOI: 10.1089/ars.2016.6773. |
[33] | Aroca A, Yruela I, Gotor C, et al. Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2021, 118(20): e2023604118. DOI: 10.1073/pnas.2023604118. |
[34] | Li N, Wang J, Zang X, et al. H2S probe CPC inhibits autophagy and promotes apoptosis by inhibiting glutathionylation of Keap1 at Cys434[J]. Apoptosis, 2021, 26(1/2): 111-131. DOI: 10.1007/s10495-020-01652-y. |
[35] |
Youness RA, Assal RA, Abdel Motaal A, et al. A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression[J]. Nitric Oxide, 2018, 80: 12-23. DOI: 10.1016/j.niox.2018.07.004.
pmid: 30081213 |
[36] | Ma Y, Wang S, Wu Y, et al. Hepatic stellate cell mediates transcription of TNFSF14 in hepatocellular carcinoma cells via H2S/CSE-JNK/JunB signaling pathway[J]. Cell Death Dis, 2022, 13(3): 238. DOI: 10.1038/s41419-022-04678-z. |
[37] | Kuschman HP, Palczewski MB, Thomas DD. Nitric oxide and hydrogen sulfide: sibling rivalry in the family of epigenetic regulators[J]. Free Radic Biol Med, 2021, 170: 34-43. DOI: 10.1016/j.freeradbiomed.2021.01.010. |
[38] | Jiang W, Liu C, Deng M, et al. H2S promotes developmental brain angiogenesis via the NOS/NO pathway in zebrafish[J]. Stroke Vasc Neurol, 2021, 6(2): 244-251. DOI: 10.1136/svn-2020-000584. |
[39] |
Ngowi EE, Afzal A, Sarfraz M, et al. Role of hydrogen sulfide donors in cancer development and progression[J]. Int J Biol Sci, 2021, 17(1): 73-88. DOI: 10.7150/ijbs.47850.
pmid: 33390834 |
[40] | Whiteman M, Li L, Rose P, et al. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages[J]. Antioxid Redox Signal, 2010, 12(10): 1147-1154. DOI: 10.1089/ars.2009.2899. |
[41] |
Dong Q, Yang B, Han JG, et al. A novel hydrogen sulfide-releasing donor, HA-ADT, suppresses the growth of human breast cancer cells through inhibiting the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways[J]. Cancer Lett, 2019, 455: 60-72. DOI: 10.1016/j.canlet.2019.04.031.
pmid: 31042588 |
[42] | Lu S, Gao Y, Huang X, et al. GYY4137, a hydrogen sulfide (H2S) donor, shows potent anti-hepatocellular carcinoma activity through blocking the STAT3 pathway[J]. Int J Oncol, 2014, 44(4): 1259-1267. DOI: 10.3892/ijo.2014.2305. |
[43] |
Dao NV, Ercole F, Kaminskas LM, et al. Trisulfide-bearing PEG brush polymers donate hydrogen sulfide and ameliorate cellular oxidative stress[J]. Biomacromolecules, 2020, 21(12): 5292-5305. DOI: 10.1021/acs.biomac.0c01347.
pmid: 33210534 |
[44] | Kaur K, Enders P, Zhu Y, et al. Amino acid-based H2S donors: N-thiocarboxyanhydrides that release H2S with innocuous bypro-ducts[J]. Chem Commun (Camb), 2021, 57(45): 5522-5525. DOI: 10.1039/d1cc01309b. |
[45] | Han H, Wang L, Liu Y, et al. Combination of curcuma zedoary and kelp inhibits growth and metastasis of liver cancer in vivo and in vitro via reducing endogenous H2S levels[J]. Food Funct, 2019, 10(1): 224-234. DOI: 10.1039/c8fo01594e. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||