国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (11): 672-676.doi: 10.3760/cma.j.cn371439-20230722-00127
收稿日期:
2023-07-22
修回日期:
2023-09-12
出版日期:
2023-11-08
发布日期:
2024-01-11
通讯作者:
丁江华
E-mail:doctor0922@126.com
Received:
2023-07-22
Revised:
2023-09-12
Online:
2023-11-08
Published:
2024-01-11
Contact:
Ding Jianghua
E-mail:doctor0922@126.com
摘要:
三阴性乳腺癌(TNBC)为乳腺癌的特殊类型,具有早期肺转移、复发率高、低生存率等临床特点。由于缺乏雌激素受体、孕激素受体和人表皮生长因子受体2表达,无确切的治疗靶点,临床治疗方法有限。对于晚期TNBC,化疗仍是其主要治疗方法。近年来,随着对肿瘤微环境的深入研究,新的免疫治疗靶点被陆续发现,以免疫疗法为主的联合治疗策略为晚期TNBC患者带来了新的希望。
谢露露, 丁江华. 免疫治疗在晚期三阴性乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(11): 672-676.
Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer[J]. Journal of International Oncology, 2023, 50(11): 672-676.
[1] |
Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040[J]. Breast. 2022, 66:15-23. DOI: 10.1016/j.breast.2022.08.010.
pmid: 36084384 |
[2] | Luo C, Wang P, He S, et al. Progress and prospect of immunotherapy for triple-negative breast cancer[J]. Front Oncol, 2022, 12: 919072. DOI: 10.3389/fonc.2022.919072. |
[3] |
Abdou Y, Goudarzi A, Yu JX, et al. Immunotherapy in triple negative breast cancer: beyond checkpoint inhibitors[J]. NPJ Breast Cancer, 2022, 8(1): 121. DOI: 10.1038/s41523-022-00486-y.
pmid: 36351947 |
[4] | Zhu Y, Zhu X, Tang C, et al. Progress and challenges of immunotherapy in triple-negative breast cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188593. DOI: 10.1016/j.bbcan.2021.188593. |
[5] | Deepak KGK, Vempati R, Nagaraju GP, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer[J]. Pharmacol Res, 2020, 153: 104683. DOI: 10.1016/j.phrs.2020.104683. |
[6] |
Fan Y, He S. The characteristics of tumor microenvironment in triple negative breast cancer[J]. Cancer Manag Res, 2022, 14: 1-17. DOI: 10.2147/CMAR.S316700.
pmid: 35018117 |
[7] |
Xiao Y, Ma D, Zhao S, et al. Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer[J]. Clin Cancer Res, 2019, 25(16): 5002-5014. DOI: 10.1158/1078-0432.CCR-18-3524.
pmid: 30837276 |
[8] | Thacker G, Henry S, Nandi A, et al. Immature natural killer cells promote progression of triple-negative breast cancer[J]. Sci Transl Med, 2023, 15(686): eabl4414. DOI: 10.1126/scitranslmed.abl4414. |
[9] |
Hu X, Wang J, Chu M, et al. Emerging role of ubiquitination in the regulation of PD-1/PD-L1 in cancer immunotherapy[J]. Mol Ther, 2021, 29(3): 908-919. DOI: 10.1016/j.ymthe.2020.12.032.
pmid: 33388422 |
[10] | Dirix LY, Takacs I, Jerusalem G, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN solid tumor study[J]. Breast Cancer Res Treat, 2018, 167(3): 671-686. DOI: 10.1007/s10549-017-4537-5. |
[11] |
Emens LA, Cruz C, Eder JP, et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study[J]. JAMA Oncol, 2019, 5(1): 74-82. DOI: 10.1001/jamaoncol.2018.4224.
pmid: 30242306 |
[12] |
Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): where to go from here[J]. Cancer, 2018, 124(10): 2086-2103. DOI: 10.1002/cncr.31272.
pmid: 29424936 |
[13] | Uliano J, Nicolò E, Corvaja C, et al. Combination immunotherapy strategies for triple-negative breast cancer:current progress and barriers within the pharmacological landscape[J]. Expert Rev Clin Pharmacol, 2022, 15(12):1399-1413. DOI: 10.1080/17512433.2022.2142559. |
[14] |
Chernikova SB, Game JC, Brown JM. Dynamin 2, cell trafficking, and the triple-negative paradox[J]. Oncotarget, 2019, 10(24): 2336-2337. DOI: 10.18632/oncotarget.26778.
pmid: 31040924 |
[15] |
Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21(1): 44-59. DOI: 10.1016/S1470-2045(19)30689-8.
pmid: 31786121 |
[16] | Cortes J, Rugo HS, Cescon DW, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer[J]. N Engl J Med, 2022, 387(3): 217-226. DOI: 10.1056/NEJMoa2202809. |
[17] | Schmid P, Cortes J, Dent R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer[J]. N Engl J Med, 2022, 386(6): 556-567. DOI: 10.1056/NEJMoa2112651. |
[18] |
Linderholm BK, Hellborg H, Johansson U, et al. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer[J]. Ann Oncol, 2009, 20(10): 1639-1646. DOI: 10.1093/annonc/mdp062.
pmid: 19549711 |
[19] |
Fukumura D, Kloepper J, Amoozgar Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges[J]. Nat Rev Clin Oncol, 2018, 15(5): 325-340. DOI: 10.1038/nrclinonc.2018.29.
pmid: 29508855 |
[20] |
Huang Y, Kim BYS, Chan CK, et al. Improving immune-vascular crosstalk for cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(3): 195-203. DOI: 10.1038/nri.2017.145.
pmid: 29332937 |
[21] | Liu J, Liu Q, Li Y, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase Ⅱ trial[J]. J Immunother Cancer, 2020, 8(1): e000696. DOI: 10.1136/jitc-2020-000696. |
[22] |
Fasching PA, Loibl S, Hu C, et al. BRCA1/2 mutations and bevacizumab in the neoadjuvant treatment of breast cancer: response and prognosis results in patients with triple-negative breast cancer from the GeparQuinto study[J]. J Clin Oncol, 2018, 36(22): 2281-2287. DOI: 10.1200/JCO.2017.77.2285.
pmid: 29791287 |
[23] |
Chen L, Jiang YZ, Wu SY, et al. Famitinib with camrelizumab and nab-paclitaxel for advanced immunomodulatory triple-negative breast cancer (FUTURE-C-Plus): an open-label, single-arm, phase Ⅱ trial[J]. Clin Cancer Res, 2022, 28(13): 2807-2817. DOI: 10.1158/1078-0432.CCR-21-4313.
pmid: 35247906 |
[24] | Liu J, Wang Y, Tian Z, et al. Multicenter phase Ⅱ trial of camrelizumab combined with apatinib and eribulin in heavily pretreated patients with advanced triple-negative breast cancer[J]. Nat Commun, 2022, 13(1): 3011. DOI: 10.1038/s41467-022-30569-0. |
[25] | Galván Morales MA, Barrera Rodríguez R, Santiago Cruz JR, et al. Overview of new treatments with immunotherapy for breast cancer and a proposal of a combination therapy[J]. Molecules, 2020, 25(23): 5686. DOI: 10.3390/molecules25235686. |
[26] | Fu Z, Li S, Han S, et al. Antibody drug conjugate: the "biological missile" for targeted cancer therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 93. DOI: 10.1038/s41392-022-00947-7. |
[27] |
Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (Trop-2) as a novel cancer target[J]. Oncotarget, 2018, 9(48): 28989-29006. DOI: 10.18632/oncotarget.25615.
pmid: 29989029 |
[28] | Zaman S, Jadid H, Denson AC, et al. Targeting Trop-2 in solid tumors: future prospects[J]. Onco Targets Ther, 2019, 12: 1781-1790. DOI: 10.2147/OTT.S162447. |
[29] |
Syed YY. Sacituzumab govitecan: first approval[J]. Drugs, 2020, 80(10): 1019-1025. DOI: 10.1007/s40265-020-01337-5.
pmid: 32529410 |
[30] |
Bardia A, Messersmith WA, Kio EA, et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase Ⅰ/Ⅱ IMMU-132-01 basket trial[J]. Ann Oncol, 2021, 32(6): 746-756. DOI: 10.1016/j.annonc.2021.03.005.
pmid: 33741442 |
[31] | O'Shaughnessy J, Brufsky A, Rugo HS, et al. Analysis of patients without and with an initial triple-negative breast cancer diagnosis in the phase 3 randomized ASCENT study of sacituzumab govitecan in metastatic triple-negative breast cancer[J]. Breast Cancer Res Treat, 2022, 195(2): 127-139. DOI: 10.1007/s10549-022-06602-7. |
[32] |
Rugo HS, Tolaney SM, Loirat D, et al. Safety analyses from the phase 3 ASCENT trial of sacituzumab govitecan in metastatic triple-negative breast cancer[J]. NPJ Breast Cancer, 2022, 8(1): 98. DOI: 10.1038/s41523-022-00467-1.
pmid: 36038616 |
[33] | Li L, Zhang F, Liu Z, et al. Immunotherapy for triple-negative breast cancer: combination strategies to improve outcome[J]. Cancers (Basel), 2023, 15(1): 321. DOI: 10.3390/cancers15010321. |
[34] |
Domchek SM, Postel-Vinay S, Im SA, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study[J]. Lancet Oncol, 2020, 21(9): 1155-1164. DOI: 10.1016/S1470-2045(20)30324-7.
pmid: 32771088 |
[35] | David S, Tan J, Siva S, et al. Combining radiotherapy and immunotherapy in metastatic breast cancer: current status and future directions[J]. Biomedicines, 2022, 10(4): 821. DOI: 10.3390/biomedicines10040821. |
[36] | Ho AY, Barker CA, Arnold BB, et al. A phase 2 clinical trial assessing the efficacy and safety of pembrolizumab and radiotherapy in patients with metastatic triple-negative breast cancer[J]. Cancer, 2020, 126(4): 850-860. DOI: 10.1002/cncr.32599. |
[37] | Ji P, Gong Y, Jin ML, et al. In vivo multidimensional CRISPR screens identify Lgals2 as an immunotherapy target in triple-negative breast cancer[J]. Sci Adv, 2022, 8(26): eabl8247. DOI: 10.1126/sciadv.abl8247. |
[1] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[2] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[3] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[4] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[5] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[6] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[7] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[8] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[9] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[10] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[11] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[12] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[13] | 崔腾璐, 吕璐, 孙鹏飞. 放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
[14] | 潘书兰, 刘畅, 贺平. 福瑞替尼对三阴性乳腺癌血管生成、肿瘤生长及IRE1-ASK1-JNK通路的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 457-462. |
[15] | 徐凡, 王婧, 毛宁, 王世雄, 李金茂. 戈沙妥珠单抗治疗晚期三阴性乳腺癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 508-510. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||