[1] |
Mikó E, Kovács T, Sebő É, et al. Microbiome-microbial metabolome-cancer cell interactions in breast cancer-familiar, but unexplored[J]. Cells, 2019, 8(4): 293. DOI: 10.3390/cells8040293.
|
[2] |
Dickson RP, Erb-Downward JR, Freeman CM, et al. Bacterial topography of the healthy human lower respiratory tract[J]. mBio, 2017, 8(1): e02287-16. DOI: 10.1128/mBio.02287-16.
|
[3] |
Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368(6494): 973-980. DOI: 10.1126/science.aay9189.
pmid: 32467386
|
[4] |
Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression[J]. Cancer Discov, 2018, 8(4): 403-416. DOI: 10.1158/2159-8290.CD-17-1134.
pmid: 29567829
|
[5] |
Banerjee S, Tian T, Wei Z, et al. Distinct microbial signatures associated with different breast cancer types[J]. Front Microbiol, 2018, 9: 951. DOI: 10.3389/fmicb.2018.00951.
pmid: 29867857
|
[6] |
Uzan-Yulzari A, Morr M, Tareef-Nabwani H, et al. The intestinal microbiome, weight, and metabolic changes in women treated by adjuvant chemotherapy for breast and gynecological malignancies[J]. BMC Med, 2020, 18(1): 281. DOI: 10.1186/s12916-020-01751-2.
pmid: 33081767
|
[7] |
Shui L, Yang X, Li J, et al. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy[J]. Front Immunol, 2019, 10: 2989. DOI: 10.3389/fimmu.2019.02989.
pmid: 32010123
|
[8] |
Vitorino M, Alpuim Costa D, Vicente R, et al. Local breast microbiota: a "new" player on the block[J]. Cancers (Basel), 2022, 14(15): 3811. DOI: 10.3390/cancers14153811.
|
[9] |
Tzeng A, Sangwan N, Jia M, et al. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer[J]. Genome Med, 2021, 13(1): 60. DOI: 10.1186/s13073-021-00874-2.
pmid: 33863341
|
[10] |
Hieken TJ, Chen J, Chen B, et al. The breast tissue microbiome, stroma, immune cells and breast cancer[J]. Neoplasia, 2022, 27: 100786. DOI: 10.1016/j.neo.2022.100786.
|
[11] |
Parida S, Sharma D. Microbial alterations and risk factors of breast cancer: connections and mechanistic insights[J]. Cells, 2020, 9(5): 1091. DOI: 10.3390/cells9051091.
|
[12] |
Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185(8): 1356-1372.e26. DOI: 10.1016/j.cell.2022.02.027.
pmid: 35395179
|
[13] |
Klann E, Williamson JM, Tagliamonte MS, et al. Microbiota composition in bilateral healthy breast tissue and breast tumors[J]. Cancer Causes Control, 2020, 31(11): 1027-1038. DOI: 10.1007/s10552-020-01338-5.
|
[14] |
Smith A, Pierre JF, Makowski L, et al. Distinct microbial communities that differ by race, stage, or breast-tumor subtype in breast tissues of non-Hispanic Black and non-Hispanic White women[J]. Sci Rep, 2019, 9(1): 11940. DOI: 10.1038/s41598-019-48348-1.
pmid: 31420578
|
[15] |
Pollet RM, D'Agostino EH, Walton WG, et al. An atlas of β-glucuronidases in the human intestinal microbiome[J]. Structure, 2017, 25(7): 967-977.e5. DOI: 10.1016/j.str.2017.05.003.
pmid: 28578872
|
[16] |
Sellitto A, D'Agostino Y, Alexandrova E, et al. Insights into the role of estrogen receptor β in triple-negative breast cancer[J]. Cancers (Basel), 2020, 12(6): 1477. DOI: 10.3390/cancers12061477.
|
[17] |
Shively CA, Register TC, Appt SE, et al. Consumption of Mediterranean versus Western diet leads to distinct mammary gland microbiome populations[J]. Cell Rep, 2018, 25(1): 47-56.e3. DOI: 10.1016/j.celrep.2018.08.078.
pmid: 30282037
|
[18] |
Soto-Pantoja DR, Gaber M, Arnone AA, et al. Diet alters entero-mammary signaling to regulate the breast microbiome and tumorigenesis[J]. Cancer Res, 2021, 81(14): 3890-3904. DOI: 10.1158/0008-5472.CAN-20-2983.
pmid: 34083249
|
[19] |
罗澜, 陈创, 李昕倩, 等. 细菌与乳腺癌的关系[J]. 国际肿瘤学杂志, 2021, 48(5): 292-295. DOI: 10.3760/cma.j.cn371439-20200629-00056.
|
[20] |
Giallourou N, Urbaniak C, Puebla-Barragan S, et al. Characterizing the breast cancer lipidome and its interaction with the tissue microbiota[J]. Commun Biol, 2021, 4(1): 1229. DOI: 10.1038/s42003-021-02710-0.
pmid: 34707244
|
[21] |
Dadsena S, Hassan DG, Holthuis JCM. Unraveling the molecular principles by which ceramides commit cells to death[J]. Cell Stress, 2019, 3(8): 280-283. DOI: 10.15698/cst2019.08.196.
pmid: 31440742
|
[22] |
Portincasa P, Bonfrate L, Vacca M, et al. Gut microbiota and short chain fatty acids: implications in glucose homeostasis[J]. Int J Mol Sci, 2022, 23(3): 1105. DOI: 10.3390/ijms23031105.
|
[23] |
Schulthess J, Pandey S, Capitani M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages[J]. Immunity, 2019, 50(2): 432-445.e7. DOI: 10.1016/j.immuni.2018.12.018.
pmid: 30683619
|
[24] |
Salimi V, Shahsavari Z, Safizadeh B, et al. Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment[J]. Lipids Health Dis, 2017, 16(1): 208. DOI: 10.1186/s12944-017-0593-4.
pmid: 29096636
|
[25] |
Bagheri Z, Moeinzadeh L, Razmkhah M. Roles of microbiota in cancer: from tumor development to treatment[J]. J Oncol, 2022, 2022: 3845104. DOI: 10.1155/2022/3845104.
|
[26] |
Chen F, Yang J, Guo Y, et al. Integrating bulk and single-cell RNA sequencing data reveals the relationship between intratumor microbiome signature and host metabolic heterogeneity in breast cancer[J]. Front Immunol, 2023, 14: 1140995. DOI: 10.3389/fimmu.2023.1140995.
|
[27] |
Rao Malla R, Marni R, Kumari S, et al. Microbiome assisted tumor microenvironment: emerging target of breast cancer[J]. Clin Breast Cancer, 2022, 22(3): 200-211. DOI: 10.1016/j.clbc.2021.09.002.
|
[28] |
Liwinski T, Zheng D, Elinav E. The microbiome and cytosolic innate immune receptors[J]. Immunol Rev, 2020, 297(1): 207-224. DOI: 10.1111/imr.12901.
pmid: 32658330
|
[29] |
Pinato DJ, Howlett S, Ottaviani D, et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer[J]. JAMA Oncol, 2019, 5(12): 1774-1778. DOI: 10.1001/jamaoncol.2019.2785.
pmid: 31513236
|
[30] |
Kim H, Lee JE, Hong SH, et al. The effect of antibiotics on the clinical outcomes of patients with solid cancers undergoing immune checkpoint inhibitor treatment: a retrospective study[J]. BMC Cancer, 2019, 19(1): 1100. DOI: 10.1186/s12885-019-6267-z.
pmid: 31718585
|
[31] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. DOI: 10.1126/science.aan3706.
pmid: 29097494
|
[32] |
Wang H, Rong X, Zhao G, et al. The microbial metabolite trime-thylamine N-oxide promotes antitumor immunity in triple-negative breast cancer[J]. Cell Metab, 2022, 34(4): 581-594.e8. DOI: 10.1016/j.cmet.2022.02.010.
pmid: 35278352
|
[33] |
Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine[J]. Science, 2017, 357(6356): 1156-1160. DOI: 10.1126/science.aah5043.
pmid: 28912244
|