国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (9): 520-526.doi: 10.3760/cma.j.cn371439-20230513-00100

• 论著 • 上一篇    下一篇

中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究

王景1, 许文婷2()   

  1. 1新疆医科大学附属肿瘤医院体检与健康管理科,乌鲁木齐 830054
    2新疆医科大学附属肿瘤医院乳腺肿瘤外科,乌鲁木齐 830054
  • 收稿日期:2023-05-13 修回日期:2023-06-19 出版日期:2023-09-08 发布日期:2023-10-26
  • 通讯作者: 许文婷 E-mail:13310899023@163.com
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2022D01C529)

Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm

Wang Jing1, Xu Wenting2()   

  1. 1Department of Physical Examination and Health Management, Cancer Hospital of Xinjiang Medical University, Urumqi 830054, China
    2Department of Breast Tumor Surgery, Cancer Hospital of Xinjiang Medical University, Urumqi 830054, China
  • Received:2023-05-13 Revised:2023-06-19 Online:2023-09-08 Published:2023-10-26
  • Contact: Xu Wenting E-mail:13310899023@163.com
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(2022D01C529)

摘要:

目的 探讨中性粒细胞与淋巴细胞比值(NLR)、癌胚抗原(CEA)联合凝血指标凝血酶原时间(PT)、活化部分凝血活酶时间(APTT)、凝血酶时间(TT)、纤维蛋白原(FIB)对直径≤1.0 cm的良恶性乳腺结节鉴别诊断的价值。方法 选择2017年1月至2023年3月在新疆医科大学附属肿瘤医院行健康体检的直径≤1.0 cm乳腺结节患者为研究对象,将2017年1月至2020年6月的患者定义为训练集,2020年7月至2023年3月的患者定义为验证集。训练集中,良性乳腺结节患者83例,乳腺癌患者106例;验证集中,良性乳腺结节患者109例,乳腺癌患者136例。采用logistic回归分析乳腺结节良恶性的影响因素,二元logistic回归构建良恶性乳腺结节的诊断预测模型,受试者工作特征(ROC)曲线评价各项指标、诊断预测模型对乳腺结节良恶性的诊断效能。结果 训练集与验证集中,良性乳腺结节患者与乳腺癌患者的中性粒细胞(t=6.76,P<0.001;t=9.14,P<0.001)、淋巴细胞(t=7.67,P<0.001;t=17.00,P<0.001)、NLR(t=13.97,P<0.001;t=17.41,P<0.001)、CEA(t=33.44,P<0.001;t=8.15,P<0.001)、PT(t=15.81,P<0.001;t=60.15,P<0.001)、APTT(t=39.50,P<0.001;t=16.34,P<0.001)、TT(t=13.34,P<0.001;t=14.37,P<0.001)、FIB(t=16.66,P<0.001;t=20.30,P<0.001)相比,差异均有统计学意义。单因素分析显示,中性粒细胞(OR=3.52,95%CI为1.26~5.37,P=0.036)、淋巴细胞(OR=2.64,95%CI为1.52~3.72,P=0.033)、NLR(OR=1.96,95%CI为1.15~3.42,P<0.001)、CEA(OR=2.16,95%CI为1.29~3.05,P<0.001)、PT(OR=1.75,95%CI为1.17~2.69,P<0.001)、APTT(OR=3.11,95%CI为1.55~5.38,P<0.001)、TT(OR=2.59,95%CI为1.38~4.11,P<0.001)、FIB(OR=2.89,95%CI为1.36~4.55,P<0.001)均是直径≤1.0 cm乳腺结节良恶性的影响因素。多因素分析显示,NLR(OR=2.06,95%CI为1.32~2.76,P<0.001)、CEA(OR=1.19,95%CI为1.09~1.37,P=0.008)、PT(OR=1.63,95%CI为1.05~2.11,P<0.001)、APTT(OR=1.52,95%CI为1.13~2.34,P<0.001)、TT(OR=1.64,95%CI为1.14~2.74,P<0.001)、FIB(OR=1.42,95%CI为1.11~1.89,P<0.001)均是直径≤1.0 cm乳腺结节良恶性的独立影响因素。ROC曲线分析显示,在训练集中,NLR、CEA、PT、APTT、TT、FIB诊断乳腺癌的曲线下面积(AUC)分别为0.83、0.65、0.69、0.72、0.73、0.70,NLR诊断乳腺癌的敏感性为76%,特异性为69%。将多因素分析中有统计学意义的指标建立诊断预测模型,logit(P)=1.76×NLR+21.42×CEA+5.14×PT+5.34×APTT+5.78×TT+6.52×FIB。ROC曲线分析显示,诊断预测模型用于训练集与验证集患者鉴别诊断的AUC分别为0.81、0.80。诊断预测模型对≤60岁及>60岁乳腺癌诊断的AUC分别为0.79、0.77,敏感性分别为82%、80%,特异性分别为75%、83%。诊断预测模型对肿瘤直径<0.3 cm、0.3~0.6 cm、0.7~1.0 cm乳腺癌诊断的AUC分别为0.63、0.74、0.91,敏感性分别为68%、73%、81%,特异性分别为72%、77%、84%。结论 NLR、CEA、PT、APTT、TT、FIB均是直径≤1.0 cm乳腺结节良恶性的独立影响因素,利用NLR、CEA联合凝血指标PT、APTT、TT、FIB构建的预测模型对直径≤1.0 cm的良恶性乳腺结节具有较高的诊断效能。

关键词: 乳腺肿瘤, 癌胚抗原, 诊断,鉴别, 中性粒细胞与淋巴细胞比值, 凝血指标

Abstract:

Objective To explore the value of neutrophil to lymphocyte ratio (NLR), carcinoembryonic antigen (CEA) combined with coagulation indicators prothrombin time (PT), activated partialthromboplastin time (APTT), thrombin time (TT), fibrinogen (FIB) in the differential diagnosis of benign and malignant breast nodules with a diameter of ≤1.0 cm. Methods Patients with breast nodule diameter ≤1.0 cm who underwent physical examination in the Cancer Hospital of Xinjiang Medical University from January 2017 to March 2023 were selected as the study objects. Patients admitted from January 2017 to June 2020 were defined as the training set, and patients admitted from July 2020 to March 2023 were defined as the validation set. In the training set, there were 83 patients with benign breast nodules and 106 patients with breast cancer; In the validation set, there were 109 patients with benign breast nodules and 136 patients with breast cancer. The influencing factors of benign and malignant breast nodules were analyzed by logistic regression. Binary logistic regression was used to construct the diagnosis and prediction model of benign and malignant breast nodules. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of each index and diagnostic prediction model for benign and malignant breast nodules. Results There were statistically significant differences between patients with benign breast nodules and patients with breast cancer in the training and validation sets in neutrophils(t=6.76, P<0.001; t=9.14, P<0.001), lymphocytes (t=7.67, P<0.001; t=17.00, P<0.001), NLR(t=13.97, P<0.001; t=17.41, P<0.001), CEA (t=33.44, P<0.001; t=8.15, P<0.001), PT (t=15.81, P<0.001; t=60.15, P<0.001), APTT (t=39.50, P<0.001; t=16.34, P<0.001), TT (t=13.34, P<0.001; t=14.37, P<0.001), FIB (t=16.66, P<0.001; t=20.30, P<0.001). The results of univariate analysis showed that neutrophils (OR=3.52, 95%CI: 1.26-5.37, P=0.036), lymphocytes (OR=2.64, 95%CI: 1.52-3.72, P=0.033), NLR (OR=1.96, 95%CI: 1.15-3.42, P<0.001), CEA (OR=2.16, 95%CI: 1.29-3.05, P<0.001), PT (OR=1.75, 95%CI: 1.17-2.69, P<0.001), APTT (OR=3.11, 95%CI: 1.55-5.38, P<0.001), TT (OR=2.59, 95%CI: 1.38-4.11, P<0.001), FIB (OR=2.89, 95%CI: 1.36-4.55, P<0.001) were all influencing factors that affected the benign and malignant breast nodules with a diameter ≤1.0 cm. The results of multivariate analysis showed that NLR (OR=2.06, 95%CI: 1.32-2.76, P<0.001), CEA (OR=1.19, 95%CI: 1.09-1.37, P=0.008), PT (OR=1.63, 95%CI: 1.05-2.11, P<0.001), APTT (OR=1.52, 95%CI: 1.13-2.34, P<0.001), TT (OR=1.64, 95%CI: 1.14-2.74, P<0.001), FIB (OR=1.42, 95%CI: 1.11-1.89, P<0.001) were all independent influencing factors on the benign and malignant breast nodules with a diameter ≤1.0 cm. ROC curve analysis results showed that the area under curve (AUC) of NLR, CEA, PT, APTT, TT, FIB in the diagnosis of breast cancer was 0.83, 0.65, 0.69, 0.72, 0.73, 0.70 respectively, in the training set. The sensitivity of NLR in the diagnosis of breast cancer was 76%, and the specificity was 69%. A diagnostic prediction model was established based on statistically significant indicators in multivariate analysis, with logit (P)=1.76×NLR+21.42×CEA+5.14×PT+5.34×APTT+5.78×TT+6.52×FIB. ROC curve analysis showed that the AUC of the diagnostic prediction model used for patient differential diagnosis in the training and validation sets was 0.81 and 0.80 respectively. The AUC of diagnosis prediction model for breast cancer diagnosis of patients aged ≤60 years old and >60 years old was 0.79 and 0.77 respectively, with sensitivity of 82% and 80%, specificity of 75% and 83% respectively. The AUC of diagnosis prediction model for breast cancer with tumor diameter <0.3 cm, 0.3-0.6 cm and 0.7-1.0 cm was 0.63, 0.74 and 0.91 respectively, with sensitivity of 68%, 73%, 81%, and specificity of 72%, 77%, 84%. Conclusion NLR, CEA, PT, APTT, TT and FIB are all independent influencing factors that affect the benign and malignant breast nodules with a diameter ≤1.0 cm. The prediction model constructed by NLR and CEA combined with coagulation indexes PT, APTT, TT and FIB has high diagnostic efficiency for benign and malignant breast nodules with a diameter ≤1.0 cm.

Key words: Breast neoplasms, Carcinoembryonic antigen, Diagnosis, differential, Neutrophil to lymphocyte ratio, Coagulation indicators