[1] |
Shang H, Li J, Jiao T, et al. Differentiation of lung metastases originated from different primary tumors using radiomics features based on CT imaging[J]. Acad Radiol, 2023, 30(1): 40-46. DOI: 10.1016/j.acra.2022.04.008.
doi: 10.1016/j.acra.2022.04.008
|
[2] |
Chen H, Huang S, Zeng Q, et al. A retrospective study analyzing missed diagnosis of lung metastases at their early stages on computed tomography[J]. J Thorac Dis, 2019, 11(8): 3360-3368. DOI: 10.21037/jtd.2019.08.19.
doi: 10.21037/jtd.2019.08.19
pmid: 31559039
|
[3] |
Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Res, 2017, 77(14): 3922-3930. DOI: 10.1158/0008-5472.CAN-17-0122.
doi: 10.1158/0008-5472.CAN-17-0122
pmid: 28566328
|
[4] |
Zhang Z, He K, Wang Z, et al. Multiparametric MRI radiomics for the early prediction of response to chemoradiotherapy in patients with postoperative residual gliomas: an initial study[J]. Front Oncol, 2021, 11: 779202. DOI: 10.3389/fonc.2021.779202.
doi: 10.3389/fonc.2021.779202
|
[5] |
Chu H, Liu Z, Liang W, et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma[J]. Eur Radiol, 2021, 31(4): 2368-2376. DOI: 10.1007/s00330-020-07250-5.
doi: 10.1007/s00330-020-07250-5
pmid: 33033863
|
[6] |
Peikert T, Duan F, Rajagopalan S, et al. Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the national lung screening trial[J]. PLoS One, 2018, 13(5): e0196910. DOI: 10.1371/journal.pone.0196910.
doi: 10.1371/journal.pone.0196910
|
[7] |
Choi W, Oh JH, Riyahi S, et al. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer[J]. Med Phys, 2018, 45(4): 1537-1549. DOI: 10.1002/mp.12820.
doi: 10.1002/mp.12820
pmid: 29457229
|
[8] |
Kirienko M, Cozzi L, Rossi A, et al. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions[J]. Eur J Nucl Med Mol Imaging, 2018, 45(10): 1649-1660. DOI: 10.1007/s00259-018-3987-2.
doi: 10.1007/s00259-018-3987-2
|
[9] |
Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research[J]. J Chiropr Med, 2016, 15(2): 155-163. DOI: 10.1016/j.jcm.2016.02.012.
doi: 10.1016/j.jcm.2016.02.012
pmid: 27330520
|
[10] |
Huang S, Cai N, Pacheco PP, et al. Applications of support vector machine (SVM) learning in cancer genomics[J]. Cancer Genomics Proteomics, 2018, 15(1): 41-51. DOI: 10.21873/cgp.20063.
doi: 10.21873/cgp.20063
|
[11] |
Fernández-Delgado M, Cernadas E, Barro S, et al. Do we need hundreds of classifiers to solve real world classification problems?[J]. J Mach Learn Res, 2014, 15(1): 3133-3181. DOI: 10.5555/2627435.2697065.
doi: 10.5555/2627435.2697065
|
[12] |
Kniep HC, Madesta F, Schneider T, et al. Radiomics of brain MRI: utility in prediction of metastatic tumor type[J]. Radiology, 2019, 290(2): 479-487. DOI: 10.1148/radiol.2018180946.
doi: 10.1148/radiol.2018180946
pmid: 30526358
|
[13] |
Ortiz-Ramón R, Larroza A, Ruiz-España S, et al. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study[J]. Eur Radiol, 2018, 28(11): 4514-4523. DOI: 10.1007/s00330-018-5463-6.
doi: 10.1007/s00330-018-5463-6
pmid: 29761357
|
[14] |
Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, et al. Three-dimensional solid texture analysis in biomedical imaging: review and opportunities[J]. Med Image Anal, 2014, 18(1): 176-196. DOI: 10.1016/j.media.2013.10.005.
doi: 10.1016/j.media.2013.10.005
pmid: 24231667
|
[15] |
Kotrotsou A, Zinn PO, Colen RR. Radiomics in brain tumors: an emerging technique for characterization of tumor environment[J]. Magn Reson Imaging Clin N Am, 2016, 24(4): 719-729. DOI: 10.1016/j.mric.2016.06.006.
doi: S1064-9689(16)30046-0
pmid: 27742112
|
[16] |
Jiang Y, Che S, Ma S, et al. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact[J]. Cancer Imaging, 2021, 21(1): 1. DOI: 10.1186/s40644-020-00376-1.
doi: 10.1186/s40644-020-00376-1
pmid: 33407884
|
[17] |
Wang X, Song G, Jiang H, et al. Can texture analysis based on single unenhanced CT accurately predict the WHO/ISUP grading of localized clear cell renal cell carcinoma?[J]. Abdom Radiol (NY), 2021, 46(9): 4289-4300. DOI: 10.1007/s00261-021-03090-z.
doi: 10.1007/s00261-021-03090-z
pmid: 33909090
|
[18] |
Pritt B, Tessitore JJ, Weaver DL, et al. The effect of tissue fixation and processing on breast cancer size[J]. Hum Pathol, 2005, 36(7): 756-760. DOI: 10.1016/j.humpath.2005.04.018.
doi: 10.1016/j.humpath.2005.04.018
pmid: 16084944
|