国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (3): 181-185.doi: 10.3760/cma.j.cn371439-20231026-00029
收稿日期:
2023-10-26
修回日期:
2023-11-28
出版日期:
2024-03-08
发布日期:
2024-04-10
通讯作者:
王伟,Email: 基金资助:
Peng Qin, Cai Yuting, Wang Wei()
Received:
2023-10-26
Revised:
2023-11-28
Online:
2024-03-08
Published:
2024-04-10
Contact:
Wang Wei, Email: Supported by:
摘要:
核转运蛋白α2(KPNA2)是一种调节细胞核与细胞质间物质交换的关键蛋白分子,在核质运输途径中起重要作用。近年来,越来越多的研究表明,KPNA2参与多种细胞生命活动,在病毒感染、细胞增殖、免疫应答和肿瘤转移等过程中发挥重要作用。深入研究KPNA2促进肝癌发生的机制,探讨其在肝癌发展中的作用,可为肝癌的诊断、治疗以及预后提供新的思路。
彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185.
Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer[J]. Journal of International Oncology, 2024, 51(3): 181-185.
[1] | Rumgay H, Ferlay J, de Martel C, et al. Global, regional and national burden of primary liver cancer by subtype[J]. Eur J Cancer, 2022, 161: 108-118. DOI: 10.1016/j.ejca.2021.11.023. |
[2] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. |
[3] | Cheung TT, Wai-Hung Ho D, Lyu SX, et al. Multimodal integrative genomics and pathology analyses in neoadjuvant nivolumab treatment for intermediate and locally advanced hepatocellular carcinoma[J]. Liver Cancer, 2024, 13(1): 70-88. DOI: 10.1159/000531176. |
[4] | Zhang L, Zhang YM, Wang CD, et al. Integrated single-cell RNA sequencing analysis reveals distinct cellular and transcriptional modules associated with survival in lung cancer[J]. Signal Transduct Target Ther, 2022, 7(1): 9. DOI: 10.1038/s41392-021-00824-9. |
[5] | Jensen JB, Munksgaard PP, Sørensen CM, et al. High expression of karyopherin-α 2 defines poor prognosis in non-muscle-invasive bladder cancer and in patients with invasive bladder cancer undergoing radical cystectomy[J]. Eur Urol, 2011, 59(5): 841-848. DOI: 10.1016/j.eururo.2011.01.048. |
[6] | Guo XG, Wang ZH, Zhang JN, et al. Upregulated KPNA2 promotes hepatocellular carcinoma progression and indicates prognostic significance across human cancer types[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(3): 285-292. DOI: 10.1093/abbs/gmz003. |
[7] | Han Y, Wang X. The emerging roles of KPNA2 in cancer[J]. Life Sci, 2020, 241: 117140. DOI: 10.1016/j.lfs.2019.117140. |
[8] | Yang XY, Wang H, Zhang L, et al. Novel roles of karyopherin subunit alpha 2 in hepatocellular carcinoma[J]. Biomed Pharmacother, 2023, 163: 114792. DOI: 10.1016/j.biopha.2023.114792. |
[9] | Nakanishi A, Okumura H, Hashita T, et al. Ivermectin inhibits HBV entry into the nucleus by suppressing KPNA2[J]. Viruses, 2022, 14(11): 2468. DOI: 10.3390/v14112468. |
[10] | Zhao LN, Yuan HF, Wang YF, et al. HBV confers innate immune evasion through triggering HAT1/acetylation of H4K5/H4K12/miR-181a-5p or KPNA2/cGAS-STING/IFN-Ⅰ signaling[J]. J Med Virol, 2023, 95(7): e28966. DOI: 10.1002/jmv.28966. |
[11] | Gao CL, Wang GW, Yang GQ, et al. Karyopherin subunit-α2 expression accelerates cell cycle progression by upregulating CCNB2 and CDK1 in hepatocellular carcinoma[J]. Oncol Lett, 2018, 15(3): 2815-2820. DOI: 10.3892/ol.2017.7691. |
[12] |
Zeng FC, Luo LM, Li DY, et al. KPNA2 interaction with CBX8 contributes to the development and progression of bladder cancer by mediating the PRDM1/c-FOS pathway[J]. J Transl Med, 2021, 19(1): 112. DOI: 10.1186/s12967-021-02709-5.
pmid: 33731128 |
[13] |
Chen T, Liu R, Niu Y, et al. HIF-1α-activated long non-coding RNA KDM4A-AS1 promotes hepatocellular carcinoma progression via the miR-411-5p/KPNA2/AKT pathway[J]. Cell Death Dis, 2021, 12(12): 1152. DOI: 10.1038/s41419-021-04449-2.
pmid: 34903711 |
[14] | Chakraborty S, Anand S, Coe S, et al. The PCOS-NAFLD multidisease phenotype occurred in medaka fish four generations after the removal of bisphenol a exposure[J]. Environ Sci Technol, 2023, 57(34): 12602-12619. DOI: 10.1021/acs.est.3c01922. |
[15] |
Romanovsky E, Kluck K, Ourailidis I, et al. Homogenous TP53mut-associated tumor biology across mutation and cancer types revealed by transcriptome analysis[J]. Cell Death Discov, 2023, 9(1): 126. DOI: 10.1038/s41420-023-01413-1.
pmid: 37059713 |
[16] |
Tang GF, Zhao HB, Xie ZT, et al. Long non-coding RNA HAGLROS facilitates tumorigenesis and progression in hepatocellular carcinoma by sponging miR-26b-5p to up-regulate karyopherin α2 (KPNA2) and inactivate p53 signaling[J]. Bioengineered, 2022, 13(3): 7829-7846. DOI: 10.1080/21655979.2022.2049472.
pmid: 35291921 |
[17] | Park SH, Ham S, Lee A, et al. NLRP3 negatively regulates Treg differentiation through KPNA2-mediated nuclear translocation[J]. J Biol Chem, 2019, 294(47): 17951-17961. DOI: 10.1074/jbc.RA119.010545. |
[18] | Zhang JZ, Zhang XZ, Wang LX, et al. Multiomics-based analyses of KPNA2 highlight its multiple potentials in hepatocellular carcinoma[J]. PeerJ, 2021, 9: e12197. DOI: 10.7717/peerj.12197. |
[19] | Dou CW, Zhou ZY, Xu QR, et al. Hypoxia-induced TUFT1 promotes the growth and metastasis of hepatocellular carcinoma by activating the Ca2+/PI3K/AKT pathway[J]. Oncogene, 2019, 38(8): 1239-1255. DOI: 10.1038/s41388-018-0505-8. |
[20] |
Wang P, Zhao YH, Liu KJ, et al. Wip1 cooperates with KPNA2 to modulate the cell proliferation and migration of colorectal cancer via a p53-dependent manner[J]. J Cell Biochem, 2019, 120(9): 15709-15718. DOI: 10.1002/jcb.28840.
pmid: 31127650 |
[21] |
Jia YJ, Wang Q, Liang ML, et al. KPNA2 promotes angiogenesis by regulating STAT3 phosphorylation[J]. J Transl Med, 2022, 20(1): 627. DOI: 10.1186/s12967-022-03841-6.
pmid: 36578083 |
[22] |
Cai YC, Fu Y, Liu CC, et al. Stathmin 1 is a biomarker for diagnosis of microvascular invasion to predict prognosis of early hepatocellular carcinoma[J]. Cell Death Dis, 2022, 13(2): 176. DOI: 10.1038/s41419-022-04625-y.
pmid: 35210426 |
[23] |
Drucker E, Holzer K, Pusch S, et al. Karyopherin α2-dependent import of E2F1 and TFDP1 maintains protumorigenic stathmin expression in liver cancer[J]. Cell Commun Signal, 2019, 17(1): 159. DOI: 10.1186/s12964-019-0456-x.
pmid: 31783876 |
[24] | Wang WJ, Miyamoto Y, Chen BB, et al. Karyopherin α deficiency contributes to human preimplantation embryo arrest[J]. J Clin Invest, 2023, 133(2): e159951. DOI: 10.1172/JCI159951. |
[25] | Radhakrishnan K, Park SJ, Kim SW, et al. Karyopherin α-2 mediates MDC1 nuclear import through a functional nuclear localization signal in the tBRCT domain of MDC1[J]. Int J Mol Sci, 2020, 21(7): 2650. DOI: 10.3390/ijms21072650. |
[26] | Hu B, Qu C, Qi WJ, et al. Development and verification of the glycolysis-associated and immune-related prognosis signature for hepatocellular carcinoma[J]. Front Genet, 2022, 13: 955673. DOI: 10.3389/fgene.2022.955673. |
[27] |
Brownlee C, Heald R. Importin α partitioning to the plasma membrane regulates intracellular scaling[J]. Cell, 2019, 176(4): 805-815.e8. DOI: 10.1016/j.cell.2018.12.001.
pmid: 30639102 |
[28] | Ding F, Li JP, Zhang Y, et al. Identifying a novel endoplasmic reticulum-related prognostic model for hepatocellular carcinomas[J]. Oxid Med Cell Longev, 2022, 2022: 8248355. DOI: 10.1155/2022/8248355. |
[29] |
Pan Y, Zhang YR, Lu ZM, et al. The role of KPNA2 as a monotonically changing differentially expressed gene in the diagnosis, risk stratification, and chemotherapy sensitivity of chronic hepatitis B-liver cirrhosis-hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2023, 149(15): 13753-13771. DOI: 10.1007/s00432-023-05213-z.
pmid: 37526663 |
[30] |
Xia JG, Wu C, Tang YH, et al. CircMYH9 increases KPNA2 mRNA stability to promote hepatocellular carcinoma progression in an EIF4A3-dependent manner[J]. Am J Cancer Res, 2022, 12(9): 4361-4372. DOI:.
pmid: 36225644 |
[31] | Lin CZ, Ou RW, Hu YH. Lentiviral-mediated microRNA-26b up-regulation inhibits proliferation and migration of hepatocellular carcinoma cells[J]. Kaohsiung J Med Sci, 2018, 34(10): 547-555. DOI: 10.1016/j.kjms.2018.05.003. |
[32] |
Zan Y, Wang BF, Liang L, et al. MicroRNA-139 inhibits hepatocellular carcinoma cell growth through down-regulating karyopherin alpha 2[J]. J Exp Clin Cancer Res, 2019, 38(1): 182. DOI: 10.1186/s13046-019-1175-2.
pmid: 31046781 |
[33] | Shi CL, Sun L, Liu SZ, et al. Overexpression of karyopherin subunit alpha 2 (KPNA2) predicts unfavorable prognosis and promotes bladder cancer tumorigenicity via the P53 pathway[J]. Med Sci Monit, 2020, 26: e921087. DOI: 10.12659/MSM.921087. |
[34] | Sun Y, Li W, Li X, et al. Oncogenic role of karyopherin α2 (KPNA2) in human tumors: a pan-cancer analysis[J]. Comput Biol Med, 2021, 139: 104955. DOI: 10.1016/j.compbiomed.2021.104955. |
[35] | Chen PF, Li QH, Zeng LR, et al. A 4-gene prognostic signature predicting survival in hepatocellular carcinoma[J]. J Cell Biochem, 2019, 120(6): 9117-9124. DOI: 10.1002/jcb.28187. |
[36] |
Zhang Q, Jin XY, Shi WB, et al. A long non-coding RNA LINC00461-dependent mechanism underlying breast cancer invasion and migration via the miR-144-3p/KPNA2 axis[J]. Cancer Cell Int, 2020, 20: 137. DOI: 10.1186/s12935-020-01221-y.
pmid: 32355466 |
[37] | Zhao Q, Zhang Y, Shao SC, et al. Identification of hub genes and biological pathways in hepatocellular carcinoma by integrated bioinformatics analysis[J]. PeerJ, 2021, 9: e10594. DOI: 10.7717/peerj.10594. |
[38] | Lai WW, Li DF, Ge Q, et al. A five-LLPS gene risk score prognostic signature predicts survival in hepatocellular carcinoma[J]. Int J Genomics, 2023, 2023: 7299276. DOI: 10.1155/2023/7299276. |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[4] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[5] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[6] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[7] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[8] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[9] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[10] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[11] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞. 原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[12] | 王昆, 周中新, 臧其威. 血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[13] | 万芳, 杨钢, 李睿, 万启晶. 食管癌患者血清miR-497、miR-383水平及临床意义[J]. 国际肿瘤学杂志, 2024, 51(4): 204-209. |
[14] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[15] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||