
国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (5): 294-298.doi: 10.3760/cma.j.cn371439-20230111-00059
收稿日期:2023-01-11
									
				
											修回日期:2023-01-27
									
				
									
				
											出版日期:2023-05-08
									
				
											发布日期:2023-06-27
									
			通讯作者:
					雷大鹏
											E-mail:leidapeng@sdu.edu.cn
												基金资助:
        
               		Ju Yifan, Xu Chenyang, Lei Dapeng(
)
			  
			
			
			
                
        
    
Received:2023-01-11
									
				
											Revised:2023-01-27
									
				
									
				
											Online:2023-05-08
									
				
											Published:2023-06-27
									
			Contact:
					Lei Dapeng   
											E-mail:leidapeng@sdu.edu.cn
												Supported by:摘要:
病理组学将数字化病理学和人工智能相融合,通过提取、筛选和分析病理图片中蕴含的数据特征,对肿瘤的诊断、治疗和预后进行评估。近年来,越来越多的病理组学研究在头颈部肿瘤的计算机辅助诊断、肿瘤微环境和生物标志物识别以及预后评估等方面显示出巨大的价值,未来有望为辅助临床决策、实现头颈部肿瘤的精准治疗发挥重要的作用。
鞠逸凡, 徐晨阳, 雷大鹏. 病理组学在头颈部肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 294-298.
Ju Yifan, Xu Chenyang, Lei Dapeng. Research progress of pathomics in head and neck neoplasms[J]. Journal of International Oncology, 2023, 50(5): 294-298.
| [1] |  
											  Pisani P, Airoldi M, Allais A, et al. Metastatic disease in head & neck oncology[J]. Acta Otorhinolaryngol Ital, 2020, 40(SUPPL. 1): S1-S86. DOI: 10.14639/0392-100X-suppl.1-40-2020. 
											 												 doi: 10.14639/0392-100X-suppl.1-40-2020  | 
										
| [2] |  
											  Meccariello G, Maniaci A, Bianchi G, et al. Neck dissection and trans oral robotic surgery for oropharyngeal squamous cell carcinoma[J]. Auris Nasus Larynx, 2022, 49(1): 117-125. DOI: 10.1016/j.anl.2021.05.007. 
											 												 doi: 10.1016/j.anl.2021.05.007  | 
										
| [3] |  
											  Chi AC, Katabi N, Chen HS, et al. Interobserver variation among pathologists in evaluating perineural invasion for oral squamous cell carcinoma[J]. Head Neck Pathol, 2016, 10(4): 451-464. DOI: 10.1007/s12105-016-0722-9. 
											 												 doi: 10.1007/s12105-016-0722-9 pmid: 27140176  | 
										
| [4] |  
											  Elmore JG, Longton GM, Carney PA, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens[J]. JAMA, 2015, 313(11): 1122-1132. DOI: 10.1001/jama.2015.1405. 
											 												 doi: 10.1001/jama.2015.1405 pmid: 25781441  | 
										
| [5] |  
											  Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5): e253-e261. DOI: 10.1016/S1470-2045(19)30154-8. 
											 												 doi: 10.1016/S1470-2045(19)30154-8  | 
										
| [6] |  
											  Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology[J]. Nat Rev Clin Oncol, 2019, 16(11): 703-715. DOI: 10.1038/s41571-019-0252-y. 
											 												 doi: 10.1038/s41571-019-0252-y  | 
										
| [7] |  
											  Prewitt JM, Mendelsohn ML. The analysis of cell images[J]. Ann N Y Acad Sci, 1966, 128(3): 1035-1053. DOI: 10.1111/j.1749-6632.1965.tb11715.x. 
											 												 doi: 10.1111/j.1749-6632.1965.tb11715.x  | 
										
| [8] |  
											  Wright AM, Smith D, Dhurandhar B, et al. Digital slide imaging in cervicovaginal cytology: a pilot study[J]. Arch Pathol Lab Med, 2013, 137(5): 618-624. DOI: 10.5858/arpa.2012-0430-OA. 
											 												 doi: 10.5858/arpa.2012-0430-OA pmid: 22970841  | 
										
| [9] |  
											  Wang S, Yang DM, Rong R, et al. Pathology image analysis using segmentation deep learning algorithms[J]. Am J Pathol, 2019, 189(9): 1686-1698. DOI: 10.1016/j.ajpath.2019.05.007. 
											 												 doi: S0002-9440(18)31121-0 pmid: 31199919  | 
										
| [10] |  
											  Jacques SL. Optical properties of biological tissues: a review[J]. Phys Med Biol, 2013, 58(11): R37-R61. DOI: 10.1088/0031-9155/58/11/R37. 
											 												 doi: 10.1088/0031-9155/58/11/R37  | 
										
| [11] |  
											  Lu G, Fei B. Medical hyperspectral imaging: a review[J]. J Biomed Opt, 2014, 19(1): 10901. DOI: 10.1117/1.JBO.19.1.010901. 
											 												 doi: 10.1117/1.JBO.19.1.010901 pmid: 24441941  | 
										
| [12] |  
											  Manolakis D, Shaw G. Detection algorithms for hyperspectral ima-ging applications[J]. IEEE Signal Process Mag, 2002, 19(1): 29-43. DOI: 10.1109/79.974724. 
											 												 doi: 10.1109/79.974724  | 
										
| [13] |  
											  Lu S, Stein JE, Rimm DL, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis[J]. JAMA Oncol, 2019, 5(8): 1195-1204. DOI: 10.1001/jamaoncol.2019.1549. 
											 												 doi: 10.1001/jamaoncol.2019.1549  | 
										
| [14] |  
											  Bodenmiller B. Multiplexed epitope-based tissue imaging for disco-very and healthcare applications[J]. Cell Syst, 2016, 2(4): 225-238. DOI: 10.1016/j.cels.2016.03.008. 
											 												 doi: 10.1016/j.cels.2016.03.008 pmid: 27135535  | 
										
| [15] |  
											  Mansoor I, Zalles C, Zahid F, et al. Fine-needle aspiration of folli-cular adenoma versus parathyroid adenoma: the utility of multis-pectral imaging in differentiating lesions with subtle cyto-morphologic differences[J]. Cancer, 2008, 114(1): 22-26. DOI: 10.1002/cncr.23252. 
											 												 doi: 10.1002/cncr.23252  | 
										
| [16] |  
											  Halicek M, Little JV, Wang X, et al. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks[J]. J Biomed Opt, 2019, 24(3): 1-9. DOI: 10.1117/1.JBO.24.3.036007. 
											 												 doi: 10.1117/1.JBO.24.3.036007 pmid: 30891966  | 
										
| [17] |  
											  Baik J, Ye Q, Zhang L, et al. Automated classification of oral premalignant lesions using image cytometry and Random Forests-based algorithms[J]. Cell Oncol (Dordr), 2014, 37(3): 193-202. DOI: 10.1007/s13402-014-0172-x. 
											 												 doi: 10.1007/s13402-014-0172-x  | 
										
| [18] |  
											  Wang Y, Guan Q, Lao I, et al. Using deep convolutional neural networks for multi-classification of thyroid tumor by histopathology: a large-scale pilot study[J]. Ann Transl Med, 2019, 7(18): 468. DOI: 10.21037/atm.2019.08.54. 
											 												 doi: 10.21037/atm.2019.08.54 pmid: 31700904  | 
										
| [19] |  
											  Araújo T, Aresta G, Castro E, et al. Classification of breast cancer histology images using Convolutional Neural Networks[J]. PLoS One, 2017, 12(6): e0177544. DOI: 10.1371/journal.pone.0177544. 
											 												 doi: 10.1371/journal.pone.0177544  | 
										
| [20] |  
											  Han Z, Wei B, Zheng Y, et al. Breast cancer multi-classification from histopathological images with structured deep learning model[J]. Sci Rep, 2017, 7(1): 4172. DOI: 10.1038/s41598-017-04075-z. 
											 												 doi: 10.1038/s41598-017-04075-z pmid: 28646155  | 
										
| [21] |  
											  Ringash J. Survivorship and quality of life in head and neck cancer[J]. J Clin Oncol, 2015, 33(29): 3322-3327. DOI: 10.1200/JCO.2015.61.4115. 
											 												 doi: 10.1200/JCO.2015.61.4115 pmid: 26351336  | 
										
| [22] |  
											  Lu G, Little JV, Wang X, et al. Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging[J]. Clin Cancer Res, 2017, 23(18): 5426-5436. DOI: 10.1158/1078-0432.CCR-17-0906. 
											 												 doi: 10.1158/1078-0432.CCR-17-0906 pmid: 28611203  | 
										
| [23] |  
											  Halicek M, Dormer JD, Little JV, et al. Hyperspectral imaging of head and neck squamous cell carcinoma for cancer margin detection in surgical specimens from 102 patients using deep learning[J]. Cancers (Basel), 2019, 11(9): 1367. DOI: 10.3390/cancers11091367. 
											 												 doi: 10.3390/cancers11091367  | 
										
| [24] |  
											  Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor micro-environment: a milieu hindering and obstructing antitumor immune responses[J]. Front Immunol, 2020, 11: 940. DOI: 10.3389/fimmu.2020.00940. 
											 												 doi: 10.3389/fimmu.2020.00940 pmid: 32499786  | 
										
| [25] |  
											  Tong CC, Kao J, Sikora AG. Recognizing and reversing the im-munosuppressive tumor microenvironment of head and neck cancer[J]. Immunol Res, 2012, 54(1/3): 266-274. DOI: 10.1007/s12026-012-8306-6. 
											 												 doi: 10.1007/s12026-012-8306-6  | 
										
| [26] |  
											  Wondergem NE, Nauta IH, Muijlwijk T, et al. The immune micro-environment in head and neck squamous cell carcinoma: on subsets and subsites[J]. Curr Oncol Rep, 2020, 22(8): 81. DOI: 10.1007/s11912-020-00938-3. 
											 												 doi: 10.1007/s11912-020-00938-3 pmid: 32602047  | 
										
| [27] |  
											  Peled M, Onn A, Herbst RS. Tumor-infiltrating lymphocytes-location for prognostic evaluation[J]. Clin Cancer Res, 2019, 25(5): 1449-1451. DOI: 10.1158/1078-0432.CCR-18-3803. 
											 												 doi: 10.1158/1078-0432.CCR-18-3803 pmid: 30567833  | 
										
| [28] |  
											  Hartman DJ, Ahmad F, Ferris RL, et al. Utility of CD8 score by automated quantitative image analysis in head and neck squamous cell carcinoma[J]. Oral Oncol, 2018, 86: 278-287. DOI: 10.1016/j.oraloncology.2018.10.005. 
											 												 doi: S1368-8375(18)30358-0 pmid: 30409313  | 
										
| [29] |  
											  Shaban M, Khurram SA, Fraz MM, et al. A novel digital score for abundance of tumour infiltrating lymphocytes predicts disease free survival in oral squamous cell carcinoma[J]. Sci Rep, 2019, 9(1): 13341. DOI: 10.1038/s41598-019-49710-z. 
											 												 doi: 10.1038/s41598-019-49710-z pmid: 31527658  | 
										
| [30] |  
											  Shaban M, Raza SEA, Hassan M, et al. A digital score of tumour-associated stroma infiltrating lymphocytes predicts survival in head and neck squamous cell carcinoma[J]. J Pathol, 2022, 256(2): 174-185. DOI: 10.1002/path.5819. 
											 												 doi: 10.1002/path.5819  | 
										
| [31] |  
											  Fraz MM, Khurram SA, Graham S, et al. FABnet: feature attention-based network for simultaneous segmentation of microvessels and nerves in routine histology images of oral cancer[J]. Neural Comput Appl, 2020, 32(14): 9915-9928. DOI: 10.1007/s00521-019-04516-y. 
											 												 doi: 10.1007/s00521-019-04516-y  | 
										
| [32] |  
											  Das DK, Bose S, Maiti AK, et al. Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis[J]. Tissue Cell, 2018, 53: 111-119. DOI: 10.1016/j.tice.2018.06.004. 
											 												 doi: S0040-8166(18)30113-7 pmid: 30060821  | 
										
| [33] |  
											  Cyll K, Ersvær E, Vlatkovic L, et al. Tumour heterogeneity poses a significant challenge to cancer biomarker research[J]. Br J Cancer, 2017, 117(3): 367-375. DOI: 10.1038/bjc.2017.171. 
											 												 doi: 10.1038/bjc.2017.171  | 
										
| [34] |  
											  de Ruiter EJ, de Roest RH, Brakenhoff RH, et al. Digital pathology-aided assessment of tumor-infiltrating T lymphocytes in advanced stage, HPV-negative head and neck tumors[J]. Cancer Immunol Immunother, 2020, 69(4): 581-591. DOI: 10.1007/s00262-020-02481-3. 
											 												 doi: 10.1007/s00262-020-02481-3 pmid: 31980916  | 
										
| [35] |  
											  Humphries MP, Craig SG, Kacprzyk R, et al. The adaptive immune and immune checkpoint landscape of neoadjuvant treated esophageal adenocarcinoma using digital pathology quantitation[J]. BMC Cancer, 2020, 20(1): 500. DOI: 10.1186/s12885-020-06987-y. 
											 												 doi: 10.1186/s12885-020-06987-y pmid: 32487090  | 
										
| [36] |  
											  Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases[J]. J Pathol Inform, 2016, 7: 29. DOI: 10.4103/2153-3539.186902. 
											 												 doi: 10.4103/2153-3539.186902 pmid: 27563488  | 
										
| [37] |  
											  Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nat Mach Intell, 2019, 1(5): 206-215. DOI: 10.1038/s42256-019-0048-x. 
											 												 doi: 10.1038/s42256-019-0048-x pmid: 35603010  | 
										
| [1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. | 
| [2] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. | 
| [3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. | 
| [4] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. | 
| [5] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. | 
| [6] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. | 
| [7] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. | 
| [8] | 陈琦, 徐晨阳, 王寅, 雷大鹏. 高光谱成像在头颈部肿瘤诊疗中的应用现状[J]. 国际肿瘤学杂志, 2024, 51(5): 298-302. | 
| [9] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞. 原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. | 
| [10] | 万芳, 杨钢, 李睿, 万启晶. 食管癌患者血清miR-497、miR-383水平及临床意义[J]. 国际肿瘤学杂志, 2024, 51(4): 204-209. | 
| [11] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. | 
| [12] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. | 
| [13] | 张丽丽, 谭茹, 房雪利, 杨宇, 桑铮, 李宝生. 乳腺导管原位癌影像学诊断、病理学升级及影像学技术进展[J]. 国际肿瘤学杂志, 2024, 51(3): 166-169. | 
| [14] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. | 
| [15] | 彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||