国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (4): 231-235.doi: 10.3760/cma.j.cn371439-20221123-00045
收稿日期:
2022-11-23
修回日期:
2023-03-02
出版日期:
2023-04-08
发布日期:
2023-06-12
通讯作者:
付茂勇,Email: 基金资助:
Ding Hao, Ying Jintao, Fu Maoyong()
Received:
2022-11-23
Revised:
2023-03-02
Online:
2023-04-08
Published:
2023-06-12
Contact:
Fu Maoyong, Email: Supported by:
摘要:
嵌合抗原受体T细胞(CAR-T)疗法作为近几年发展迅速的治疗手段,在血液肿瘤治疗中取得了显著的效果,但在食管鳞状细胞癌等实体瘤的治疗中因多种因素而受到限制。明确CAR-T疗法受限制的原因并寻求其应对方法,可为食管鳞状细胞癌的治疗提供新的思路和见解。
丁浩, 应劲涛, 付茂勇. CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235.
Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma[J]. Journal of International Oncology, 2023, 50(4): 231-235.
表1
部分CAR-T治疗食管癌的临床试验信息"
注册号 | 临床试验名称 | 靶点 | 研究机构 | 开始日期 | 状态 |
---|---|---|---|---|---|
NCT03638206[ | Ⅰ~Ⅱ期临床研究,多靶点基因修饰CAR-T治疗食管癌的安全性和 有效性 | NY-ESO-1 | 郑州大学第一附属医院 | 2018.3.1 | 招募中 |
NCT05396300[ | Ⅰ期临床研究,评估CAR-T在晚期食管癌患者中的安全性和耐受性 | CEA | 浙江大学第一附属医院 | 2022.5.25 | 招募中 |
NCT05415475[ | Ⅰ期临床研究,验证CAR-T治疗晚期食管癌的安全性和有效性 | CEA | 山东省第二人民医院 | 2021.9.10 | 招募中 |
NCT05538195[ | Ⅰ~Ⅱ期临床研究,评估CAR-T治疗食管癌的安全性和有效性 | CEA | 河南省肿瘤医院 | 2022.6.7 | 招募中 |
NCT03013712[ | Ⅰ~Ⅱ期临床研究,评估CAR-T治疗食管癌的安全性和有效性 | EpCAM | 成都医学院 | 2017.1.6 | 招募中 |
NCT03706326[ | Ⅰ~Ⅱ期临床研究,评估CAR-T治疗食管癌患者的安全性和有效性 | MUC1 | 广东药科大学附属医院 | 2018.9.28 | 招募中 |
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
doi: 10.3322/caac.21590 |
[3] |
Li R, Ma C, Cai H, et al. The CAR T-cell mechanoimmunology at a glance[J]. Adv Sci (Weinh), 2020, 7(24): 2002628. DOI: 10. 1002/advs.202002628.
doi: 10. 1002/advs.202002628 |
[4] |
Larson RC, Kann MC, Bailey SR, et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours[J]. Nature, 2022, 604(7906): 563-570. DOI: 10.1038/s41586-022-04585-5.
doi: 10.1038/s41586-022-04585-5 |
[5] |
Timmers M, Roex G, Wang Y, et al. Chimeric antigen receptor-modified T cell therapy in multiple myeloma: beyond B cell maturation antigen[J]. Front Immunol, 2019, 10: 1613. DOI: 10.3389/fimmu.2019.01613.
doi: 10.3389/fimmu.2019.01613 pmid: 31379824 |
[6] |
Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function[J]. Mol Ther Oncolytics, 2016, 3: 16014. DOI: 10.1038/mto.2016.14.
doi: 10.1038/mto.2016.14 |
[7] |
Asmamaw Dejenie T, Tiruneh G/Medhin M, Dessie Terefe G, et al. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy[J]. Hum Vaccin Immunother, 2022, 18(6): 2114254. DOI: 10.1080/21645515.2022.2114254.
doi: 10.1080/21645515.2022.2114254 |
[8] |
Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 449-459. DOI: 10.1056/NEJMoa1709919.
doi: 10.1056/NEJMoa1709919 |
[9] |
Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma[J]. N Engl J Med, 2019, 380(1): 45-56. DOI: 10.1056/NEJMoa1804980.
doi: 10.1056/NEJMoa1804980 |
[10] |
Siddiqui RS, Sardar M. A systematic review of the role of chimeric antigen receptor T (CAR-T) cell therapy in the treatment of solid tumors[J]. Cureus, 2021, 13(4): e14494. DOI: 10.7759/cureus.14494.
doi: 10.7759/cureus.14494 |
[11] |
Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy[J]. Int J Biol Sci, 2020, 16(11): 1767-1773. DOI: 10.7150/ijbs.41105.
doi: 10.7150/ijbs.41105 pmid: 32398947 |
[12] |
Chen L, Chen J, Xu B, et al. B7-H3 expression associates with tumor invasion and patient's poor survival in human esophageal cancer[J]. Am J Transl Res, 2015, 7(12): 2646-2660.
pmid: 26885263 |
[13] |
Xuan Y, Sheng Y, Zhang D, et al. Targeting CD276 by CAR-T cells induces regression of esophagus squamous cell carcinoma in xenograft mouse models[J]. Transl Oncol, 2021, 14(8): 101138. DOI: 10.1016/j.tranon.2021.101138.
doi: 10.1016/j.tranon.2021.101138 |
[14] |
Yue G, Tang J, Zhang L, et al. CD276 suppresses CAR-T cell function by promoting tumor cell glycolysis in esophageal squamous cell carcinoma[J]. J Gastrointest Oncol, 2021, 12(1): 38-51. DOI: 10.21037/jgo-21-50.
doi: 10.21037/jgo-21-50 pmid: 33708423 |
[15] |
Bicyclic peptide makes targeting EphA2 possible[J]. Cancer Discov, 2021, 11(12): 2951-2952. DOI: 10.1158/2159-8290.CD-NB2021-0393.
doi: 10.1158/2159-8290.CD-NB2021-0393 pmid: 34666990 |
[16] |
Syed N, Barbhuiya MA, Pinto SM, et al. Phosphotyrosine profiling identifies ephrin receptor A2 as a potential therapeutic target in esophageal squamous-cell carcinoma[J]. Proteomics, 2015, 15(2/3): 374-382. DOI: 10.1002/pmic.201400379.
doi: 10.1002/pmic.201400379 |
[17] |
Shi H, Yu F, Mao Y, et al. EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma[J]. J Thorac Dis, 2018, 10(5): 2779-2788. DOI: 10.21037/jtd.2018.04.91.
doi: 10.21037/jtd.2018.04.91 pmid: 29997940 |
[18] |
Rong L, Wang B, Guo L, et al. HER2 expression and relevant clinicopathological features in esophageal squamous cell carcinoma in a Chinese population[J]. Diagn Pathol, 2020, 15(1): 27. DOI: 10.1186/s13000-020-00950-y.
doi: 10.1186/s13000-020-00950-y pmid: 32209107 |
[19] |
Yu F, Wang X, Shi H, et al. Development of chimeric antigen receptor-modified T cells for the treatment of esophageal cancer[J]. Tumori, 2021, 107(4): 341-352. DOI: 10.1177/030089 1620960223.
doi: 10.1177/030089 1620960223 |
[20] |
Pataskar A, Champagne J, Nagel R, et al. Tryptophan depletion results in tryptophan-to-phenylalanine substitutants[J]. Nature, 2022, 603(7902): 721-727. DOI: 10.1038/s41586-022-04499-2.
doi: 10.1038/s41586-022-04499-2 |
[21] |
Zhang T, Zhang Z, Li F, et al. miR-143 regulates memory T cell differentiation by reprogramming T cell metabolism[J]. J Immunol, 2018, 201(7): 2165-2175. DOI: 10.4049/jimmunol.1800230.
doi: 10.4049/jimmunol.1800230 pmid: 30150287 |
[22] | ClinicalTrials. gov. A first in human phase Ⅰ trial of binary oncolytic adenovirus in combination with HER2-specific autologous CAR T cells in patients with advanced HER2 positive solid tumors[EB/OL]. (2018-11-14)[2022-09-13]. https://clinicaltrials.gov/ct2/show/NCT03740256?term=NCT03740256&draw=2&rank=1. |
[23] |
Moentenich V, Comut E, Gebauer F, et al. Mesothelin expression in esophageal adenocarcinoma and squamous cell carcinoma and its possible impact on future treatment strategies[J]. Ther Adv Med Oncol, 2020, 12: 1758835920917571. DOI: 10.1177/1758835920917571.
doi: 10.1177/1758835920917571 |
[24] |
Shao J, Hou L, Liu J, et al. Indoleamine 2,3-dioxygenase 1 inhibitor-loaded nanosheets enhance CAR-T cell function in esophageal squamous cell carcinoma[J]. Front Immunol, 2021, 12: 661357. DOI: 10.3389/fimmu.2021.661357.
doi: 10.3389/fimmu.2021.661357 |
[25] | ClinicalTrials. gov. EGFRvIII/Dr5/NY-ESO-1/mesothelin CAR-T/TCR-T cells immunotherapy for solid malignancies[EB/OL]. (2021-02-04)[2022-09-04]. https://clinicaltrials.gov/ct2/show/NCT03941626?term=NCT03941626&draw=2&rank=1. |
[26] |
Wang Y, Liao X, Ye Q, et al. Clinic implication of MUC1 O-glycosylation and C1GALT1 in esophagus squamous cell carcinoma[J]. Sci China Life Sci, 2018, 61(11): 1389-1395. DOI: 10.1007/s11427-017-9345-7.
doi: 10.1007/s11427-017-9345-7 pmid: 30076562 |
[27] |
Zhang H, Zhao H, He X, et al. JAK-STAT domain enhanced MUC1-CAR-T cells induced esophageal cancer elimination[J]. Cancer Manag Res, 2020, 12: 9813-9824. DOI: 10.2147/CMAR.S264358.
doi: 10.2147/CMAR.S264358 pmid: 33116840 |
[28] | ClinicalTrials. gov. Autologous immunotherapy with multi-target gene-modified CAR-T/TCR-T cell for malignancies[EB/OL]. (2019-12-11)[2022-09-04]. https://clinicaltrials.gov/ct2/show/NCT03638206?term=NCT03638206&draw=2&rank=1. |
[29] | ClinicalTrials. gov. A phase Ⅰ clinical study of anti-CEA CAR-T therapy in the treatment of CEA-positive advanced malignant solid tumors[EB/OL]. (2022-06-02)[2022-09-07]. https://clinicaltrials.gov/ct2/show/NCT05396300?term=NCT05396300&draw=2&rank=1. |
[30] | ClinicalTrials. gov. A safety and efficacy clinical study of CEA-targeted CAR-T therapy for CEA-positive advanced malignant solid tumors[EB/OL]. (2022-07-22)[2022-09-06]. https://clinicaltrials.gov/ct2/show/NCT05415475?term=NCT05415475&draw=2&rank=1. |
[31] | ClinicalTrials. gov. Chimeric antigen receptor T lymphocytes (CAR-T) targeting CEA in the treatment of CEA positive clinical study of advanced malignant solid tumors[EB/OL]. (2022-09-13)[2022-09-16]. https://clinicaltrials.gov/ct2/show/NCT05538195?term=NCT05538195&draw=2&rank=1. |
[32] | ClinicalTrials. gov. A clinical research of CAR T cells targeting EpCAM positive cancer[EB/OL]. (2017-01-06)[2022-09-06]. https://clinicaltrials.gov/ct2/show/NCT03013712?term=NCT0301 3712&draw=2&rank=1. |
[33] | ClinicalTrials. gov. Combination therapy of anti-MUC1 CAR T cells and PD-1 knockout engineered T cells for advanced esophageal cancer[EB/OL]. (2018-10-16)[2022-09-10]. https://clinicaltrials.gov/ct2/show/NCT03706326?term=NCT03706326&draw=2&rank=1. |
[34] |
Ding XC, Wang LL, Zhang XD, et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia[J]. J Hematol Oncol, 2021, 14(1): 92. DOI: 10.1186/s13045-021-01102-5.
doi: 10.1186/s13045-021-01102-5 |
[35] |
Peng D, Kryczek I, Nagarsheth N, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy[J]. Nature, 2015, 527(7577): 249-253. DOI: 10.1038/nature15520.
doi: 10.1038/nature15520 |
[36] |
Pang N, Shi J, Qin L, et al. IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin[J]. J Hematol Oncol, 2021, 14(1): 118. DOI: 10.1186/s13045-021-01128-9.
doi: 10.1186/s13045-021-01128-9 |
[37] |
Jo Y, Ali LA, Shim JA, et al. Innovative CAR-T cell therapy for solid tumor; current duel between CAR-T spear and tumor shield[J]. Cancers (Basel), 2020, 12(8): 2087. DOI: 10.3390/cancers12082087.
doi: 10.3390/cancers12082087 |
[38] |
Xie G, Ivica NA, Jia B, et al. CAR-T cells targeting a nucleophosmin neoepitope exhibit potent specific activity in mouse models of acute myeloid leukaemia[J]. Nat Biomed Eng, 2021, 5(5): 399-413. DOI: 10.1038/s41551-020-00625-5.
doi: 10.1038/s41551-020-00625-5 |
[39] |
Navai SA, Ahmed N. Targeting the tumour profile using broad spectrum chimaeric antigen receptor T-cells[J]. Biochem Soc Trans, 2016, 44(2): 391-396. DOI: 10.1042/BST20150266.
doi: 10.1042/BST20150266 |
[40] |
Yang M, Tang X, Zhang Z, et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors[J]. Theranostics, 2020, 10(17): 7622-7634. DOI: 10.7150/thno.43991.
doi: 10.7150/thno.43991 pmid: 32685008 |
[41] |
Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2018, 15(1): 47-62. DOI: 10.1038/nrclinonc.2017.148.
doi: 10.1038/nrclinonc.2017.148 pmid: 28925994 |
[42] |
Liu S, Deng B, Yin Z, et al. Corticosteroids do not influence the efficacy and kinetics of CAR-T cells for B-cell acute lymphoblastic leukemia[J]. Blood Cancer J, 2020, 10(2): 15. DOI: 10.1038/s41408-020-0280-y.
doi: 10.1038/s41408-020-0280-y pmid: 32029707 |
[43] |
Hong R, Zhao H, Wang Y, et al. Clinical characterization and risk factors associated with cytokine release syndrome induced by COVID-19 and chimeric antigen receptor T-cell therapy[J]. Bone Marrow Transplant, 2021, 56(3): 570-580. DOI: 10.1038/s41409-020-01060-5.
doi: 10.1038/s41409-020-01060-5 |
[44] |
Gabay C, Emery P, van Vollenhoven R, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial[J]. Lancet, 2013, 381(9877): 1541-1550. DOI: 10.1016/S0140-6736(13)60250-0.
doi: 10.1016/S0140-6736(13)60250-0 pmid: 23515142 |
[45] | ClinicalTrials. gov. A phase Ⅱ pilot study to evaluate the role of siltuximab in treatment of cytokine release syndrome (CRS) and immune effector cell associated neurotoxicity (ICANS) related to chimeric antigen receptor T-cell therapy (CAR-T) in hematological malignancies[EB/OL]. (2022-12-20)[2023-02-24]. https://clinicaltrials.gov/ct2/show/NCT04975555?term=NCT04975555&draw=2&rank=1. |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[3] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[4] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[5] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[6] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[7] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[8] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[9] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[10] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[11] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[12] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[13] | 刘博翰, 黄俊星. 液体活检技术在食管鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 105-108. |
[14] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[15] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||