国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (4): 227-230.doi: 10.3760/cma.j.cn371439-20230105-00044
收稿日期:
2023-01-05
修回日期:
2023-03-10
出版日期:
2023-04-08
发布日期:
2023-06-12
通讯作者:
曹雄锋,Email: 基金资助:
Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng()
Received:
2023-01-05
Revised:
2023-03-10
Online:
2023-04-08
Published:
2023-06-12
Contact:
Cao Xiongfeng, Email: Supported by:
摘要:
癌相关成纤维细胞(CAF)是肿瘤放疗效果严重受限的关键因素。CAF作为肿瘤微环境中的主要基质细胞,可通过分泌促肿瘤细胞因子和营养物质、抑制抗肿瘤免疫反应和重塑细胞外基质等导致肿瘤放疗抵抗。靶向CAF增敏放疗的研究已取得一定进展,但相关研究体系仍不完善。因此,系统探讨CAF在肿瘤放疗抵抗中的作用及其靶向治疗策略,可为改善肿瘤放疗抵抗现状提供依据。
许萌, 姜伟, 朱海涛, 曹雄锋. 癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230.
Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance[J]. Journal of International Oncology, 2023, 50(4): 227-230.
[1] |
沈建军. 鼻咽癌放疗后局部复发的治疗[J]. 国际肿瘤学杂志, 2020, 47(4): 227-230. DOI: 10.3760/cma.j.cn371439-20190926-00007.
doi: 10.3760/cma.j.cn371439-20190926-00007 |
[2] |
Krisnawan VE, Stanley JA, Schwarz JK, et al. Tumor microenvironment as a regulator of radiation therapy: new insights into stromal-mediated radioresistance[J]. Cancers (Basel), 2020, 12(10): 2916. DOI: 10.3390/cancers12102916.
doi: 10.3390/cancers12102916 |
[3] |
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advan-cing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186. DOI: 10.1038/s41568-019-0238-1.
doi: 10.1038/s41568-019-0238-1 pmid: 31980749 |
[4] |
Kanzaki R, Pietras K. Heterogeneity of cancer-associated fibroblasts: opportunities for precision medicine[J]. Cancer Sci, 2020, 111(8): 2708-2717. DOI: 10.1111/cas.14537.
doi: 10.1111/cas.14537 |
[5] |
Hu B, Wu C, Mao H, et al. Subpopulations of cancer-associated fibroblasts link the prognosis and metabolic features of pancreatic ductal adenocarcinoma[J]. Ann Transl Med, 2022, 10(5): 262. DOI: 10.21037/atm-22-407.
doi: 10.21037/atm-22-407 pmid: 35402584 |
[6] |
Menezes S, Okail MH, Jalil SMA, et al. Cancer-associated fibroblasts in pancreatic cancer: new subtypes, new markers, new targets[J]. J Pathol, 2022, 257(4): 526-544. DOI: 10.1002/path.5926.
doi: 10.1002/path.5926 |
[7] |
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123. DOI: 10.1158/2159-8290.CD-19-0094.
doi: 10.1158/2159-8290.CD-19-0094 pmid: 31197017 |
[8] |
Wang Z, Tang Y, Tan Y, et al. Cancer-associated fibroblasts in radiotherapy: challenges and new opportunities[J]. Cell Commun Signal, 2019, 17(1): 47. DOI: 10.1186/s12964-019-0362-2.
doi: 10.1186/s12964-019-0362-2 pmid: 31101063 |
[9] |
Domogauer JD, de Toledo SM, Howell RW, et al. Acquired radioresistance in cancer associated fibroblasts is concomitant with enhanced antioxidant potential and DNA repair capacity[J]. Cell Commun Signal, 2021, 19(1): 30. DOI: 10.1186/s12964-021-00711-4.
doi: 10.1186/s12964-021-00711-4 pmid: 33637118 |
[10] |
Tommelein J, De Vlieghere E, Verset L, et al. Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation[J]. Cancer Res, 2018, 78(3): 659-670. DOI: 10.1158/0008-5472.CAN-17-0524.
doi: 10.1158/0008-5472.CAN-17-0524 pmid: 29217764 |
[11] |
Liu Y, Wu Y, Yang M, et al. Ionizing radiation-induced "zombie" carcinoma-associated fibroblasts with suppressed pro-radioresistance on OSCC cells[J]. Oral Dis, 2023, 29(2): 563-573. DOI: 10.1111/odi.13979.
doi: 10.1111/odi.13979 |
[12] |
Meng J, Li Y, Wan C, et al. Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis[J]. JCI Insight, 2021, 6(23): e146334. DOI: 10.1172/jci.insight.146334.
doi: 10.1172/jci.insight.146334 |
[13] |
Nicolas AM, Pesic M, Engel E, et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer[J]. Cancer Cell, 2022, 40(2): 168-184.e13. DOI: 10.1016/j.ccell.2022.01.004.
doi: 10.1016/j.ccell.2022.01.004 pmid: 35120600 |
[14] |
Pereira PMR, Edwards KJ, Mandleywala K, et al. iNOS regulates the therapeutic response of pancreatic cancer cells to radiotherapy[J]. Cancer Res, 2020, 80(8): 1681-1692. DOI: 10.1158/0008-5472.CAN-19-2991.
doi: 10.1158/0008-5472.CAN-19-2991 pmid: 32086240 |
[15] |
Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, et al. Biological adaptations of tumor cells to radiation therapy[J]. Front Oncol, 2021, 11: 718636. DOI: 10.3389/fonc.2021.718636.
doi: 10.3389/fonc.2021.718636 |
[16] |
Kozłowska-Masłoń J, Guglas K, Paszkowska A, et al. Radio-lncRNAs: biological function and potential use as biomarkers for personalized oncology[J]. J Pers Med, 2022, 12(10): 1605. DOI: 10.3390/jpm12101605.
doi: 10.3390/jpm12101605 |
[17] |
Huang W, Zhang L, Yang M, et al. Cancer-associated fibroblasts promote the survival of irradiated nasopharyngeal carcinoma cells via the NF-κB pathway[J]. J Exp Clin Cancer Res, 2021, 40(1): 87. DOI: 10.1186/s13046-021-01878-x.
doi: 10.1186/s13046-021-01878-x |
[18] |
Chen X, Liu Y, Zhang Q, et al. Exosomal miR-590-3p derived from cancer-associated fibroblasts confers radioresistance in colorectal cancer[J]. Mol Ther Nucleic Acids, 2021, 24: 113-126. DOI: 10.1016/j.omtn.2020.11.003.
doi: 10.1016/j.omtn.2020.11.003 |
[19] |
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226. DOI: 10.1016/j.tcb.2018.12.001.
doi: S0962-8924(18)30201-0 pmid: 30594349 |
[20] |
Lambin T, Lafon C, Drainville RA, et al. Locoregional therapies and their effects on the tumoral microenvironment of pancreatic ductal adenocarcinoma[J]. World J Gastroenterol, 2022, 28(13): 1288-1303. DOI: 10.3748/wjg.v28.i13.1288.
doi: 10.3748/wjg.v28.i13.1288 |
[21] |
Nandi A, Debnath R, Nayak A, et al. Dll1-mediated notch signaling drives tumor cell cross-talk with cancer-associated fibroblasts to promote radioresistance in breast cancer[J]. Cancer Res, 2022, 82(20): 3718-3733. DOI: 10.1158/0008-5472.CAN-21-1225.
doi: 10.1158/0008-5472.CAN-21-1225 |
[22] |
Yamauchi N, Kanke Y, Saito K, et al. Stromal expression of cancer-associated fibroblast-related molecules, versican and lumican, is strongly associated with worse relapse-free and overall survival times in patients with esophageal squamous cell carcinoma[J]. Oncol Lett, 2021, 21(6): 445. DOI: 10.3892/ol.2021.12706.
doi: 10.3892/ol.2021.12706 pmid: 33868483 |
[23] |
Steele NG, Biffi G, Kemp SB, et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer[J]. Clin Cancer Res, 2021, 27(7): 2023-2037. DOI: 10.1158/1078-0432.CCR-20-3715.
doi: 10.1158/1078-0432.CCR-20-3715 pmid: 33495315 |
[24] |
Li J, Peng L, Chen Q, et al. Integrin β1 in pancreatic cancer: expressions, functions, and clinical implications[J]. Cancers (Basel), 2022, 14(14): 3377. DOI: 10.3390/cancers14143377.
doi: 10.3390/cancers14143377 |
[25] |
Cordes N, Ney M, Beleites T, et al. Retrospective investigation of the prognostic value of the β1 integrin expression in patients with head and neck squamous cell carcinoma receiving primary radio(chemo)therapy[J]. PLoS One, 2018, 13(12): e0209479. DOI: 10.1371/journal.pone.0209479.
doi: 10.1371/journal.pone.0209479 |
[26] |
Vehlow A, Klapproth E, Jin S, et al. Interaction of discoidin domain receptor 1 with a 14-3-3-Beclin-1-Akt1 complex modulates glioblastoma therapy sensitivity[J]. Cell Rep, 2019, 26(13): 3672-3683.e7. DOI: 10.1016/j.celrep.2019.02.096.
doi: S2211-1247(19)30282-7 pmid: 30917320 |
[27] |
Zhou W, Yu X, Sun S, et al. Increased expression of MMP-2 and MMP-9 indicates poor prognosis in glioma recurrence[J]. Biomed Pharmacother, 2019, 118: 109369. DOI: 10.1016/j.biopha.2019.109369.
doi: 10.1016/j.biopha.2019.109369 |
[28] |
Sheng Y, Zhang B, Xing B, et al. Cancer-associated fibroblasts exposed to high-dose ionizing radiation promote M2 polarization of macrophages, which induce radiosensitivity in cervical cancer[J]. Cancers (Basel), 2023, 15(5): 1620. DOI: 10.3390/cancers15051620.
doi: 10.3390/cancers15051620 |
[29] |
Yang N, Lode K, Berzaghi R, et al. Irradiated tumor fibroblasts avoid immune recognition and retain immunosuppressive functions over natural killer cells[J]. Front Immunol, 2021, 11: 602530. DOI: 10.3389/fimmu.2020.602530.
doi: 10.3389/fimmu.2020.602530 |
[30] |
Berzaghi R, Tornaas S, Lode K, et al. Ionizing radiation curtails immunosuppressive effects from cancer-associated fibroblasts on dendritic cells[J]. Front Immunol, 2021, 12: 662594. DOI: 10./fimmu.2021.662594.
doi: 10./fimmu.2021.662594 |
[31] |
Li F, Zhao S, Wei C, et al. Development of Nectin4/FAP-targeted CAR-T cells secreting IL-7, CCL19, and IL-12 for malignant solid tumors[J]. Front Immunol, 2022, 13: 958082. DOI: 10.3389/fimmu.2022.958082.
doi: 10.3389/fimmu.2022.958082 |
[32] |
Labiano S, Roh V, Godfroid C, et al. CD40 agonist targeted to fibroblast activation protein α synergizes with radiotherapy in murine HPV-positive head and neck tumors[J]. Clin Cancer Res, 2021, 27(14): 4054-4065. DOI: 10.1158/1078-0432.CCR-20-4717.
doi: 10.1158/1078-0432.CCR-20-4717 pmid: 33903200 |
[33] |
Han X, Li Y, Xu Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem[J]. Nat Commun, 2018, 9(1): 3390. DOI: 10.1038/s41467-018-05906-x.
doi: 10.1038/s41467-018-05906-x pmid: 30139933 |
[34] |
Eckert MA, Coscia F, Chryplewicz A, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts[J]. Nature, 2019, 569(7758): 723-728. DOI: 10.1038/s41586-019-1173-8.
doi: 10.1038/s41586-019-1173-8 |
[35] |
Wang J, Xu Z, Wang Z, et al. TGF-beta signaling in cancer radiotherapy[J]. Cytokine, 2021, 148: 155709. DOI: 10.1016/j.cyto.2021.155709.
doi: 10.1016/j.cyto.2021.155709 |
[36] |
Mohapatra D, Das B, Suresh V, et al. Fluvastatin sensitizes pancreatic cancer cells toward radiation therapy and suppresses radiation- and/or TGF-β-induced tumor-associated fibrosis[J]. Lab Invest, 2022, 102(3): 298-311. DOI: 10.1038/s41374-021-00690-7.
doi: 10.1038/s41374-021-00690-7 |
[37] |
Liu CS, Rioja I, Bakr A, et al. Selective inhibitors of bromodomain BD1 and BD2 of BET proteins modulate radiation-induced profibrotic fibroblast responses[J]. Int J Cancer, 2022, 151(2): 275-286. DOI: 10.1002/ijc.33989.
doi: 10.1002/ijc.33989 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||