[1] |
中国抗癌协会妇科肿瘤专业委员会. 卵巢恶性肿瘤诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021, 31(6): 490-500. DOI: 10.19401/j.cnki.1007-3639.2021.06.07.
doi: 10.19401/j.cnki.1007-3639.2021.06.07
|
[2] |
Deng K, Yang C, Tan Q, et al. Sites of distant metastases and overall survival in ovarian cancer: a study of 1481 patients[J]. Gynecol Oncol, 2018, 150(3): 460-465. DOI: 10.1016/j.ygyno.2018.06.022.
doi: S0090-8258(18)31004-7
pmid: 30001833
|
[3] |
Kim SI, Song M, Hwangbo S, et al. Development of web-based nomograms to predict treatment response and prognosis of epithelial ovarian cancer[J]. Cancer Res Treat, 2019, 51(3): 1144-1155. DOI: 10.4143/crt.2018.508.
doi: 10.4143/crt.2018.508
pmid: 30453728
|
[4] |
Hwangbo S, Kim SI, Kim JH, et al. Development of machine learning models to predict platinum sensitivity of high-grade serous ovarian carcinoma[J]. Cancers (Basel), 2021, 13(8): 1875. DOI: 10.3390/cancers13081875.
doi: 10.3390/cancers13081875
|
[5] |
Hou GM, Jiang C, Du JP, et al. Nomogram models for predicting risk and prognosis of newly diagnosed ovarian cancer patients with liver metastases—a large population-based real-world study[J]. J Cancer, 2021, 12(24): 7255-7265. DOI: 10.7150/jca.64255.
doi: 10.7150/jca.64255
|
[6] |
Wang S, Liu Z, Rong Y, et al. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer[J]. Radiother Oncol, 2019, 132: 171-177. DOI: 10.1016/j.radonc.2018.10.019.
doi: S0167-8140(18)33543-6
pmid: 30392780
|
[7] |
Zhou J, Li L, Wang L, et al. Establishment of a SVM classifier to predict recurrence of ovarian cancer[J]. Mol Med Rep, 2018, 18(4): 3589-3598. DOI: 10.3892/mmr.2018.9362.
doi: 10.3892/mmr.2018.9362
pmid: 30106117
|
[8] |
Rustin GJ, Vergote I, Eisenhauer E, et al. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG)[J]. Int J Gynecol Cancer, 2011, 21(2): 419-423. DOI: 10.1097/IGC.0b013e3182070f17.
doi: 10.1097/IGC.0b013e3182070f17
pmid: 21270624
|
[9] |
Tokunaga H, Shimada M, Ishikawa M, et al. TNM classification of gynaecological malignant tumours, eighth edition: changes between the seventh and eighth editions[J]. Jpn J Clin Oncol, 2019, 49(4): 311-320. DOI: 10.1093/jjco/hyy206.
doi: 10.1093/jjco/hyy206
pmid: 30668753
|
[10] |
Zamanipoor Najafabadi AH, Ramspek CL, Dekker FW, et al. TRIPOD statement: a preliminary pre-post analysis of reporting and methods of prediction models[J]. BMJ Open, 2020, 10(9): e041537. DOI: 10.1136/bmjopen-2020-041537.
doi: 10.1136/bmjopen-2020-041537
|
[11] |
Zhang C, Guo X, Peltzer K, et al. The prevalence, associated factors for bone metastases development and prognosis in newly diagnosed ovarian cancer: a large population based real-world study[J]. J Cancer, 2019, 10(14): 3133-3139. DOI: 10.7150/jca.30335.
doi: 10.7150/jca.30335
pmid: 31289583
|
[12] |
贺贵福, 宋炳胜, 赵义, 等. CEA、CA125升高水平与PET/CT显像评估卵巢癌治疗后复发及转移的价值[J]. 中国老年学杂志, 2015, 35(6): 1494-1496. DOI: 10.3969/j.issn.1005-9202.2015.06.027.
doi: 10.3969/j.issn.1005-9202.2015.06.027
|
[13] |
Akazawa M, Hashimoto K. Artificial intelligence in ovarian cancer diagnosis[J]. Anticancer Res, 2020, 40(8): 4795-4800. DOI: 10.21873/anticanres.14482.
doi: 10.21873/anticanres.14482
pmid: 32727807
|
[14] |
Gould MK, Huang BZ, Tammemagi MC, et al. Machine learning for early lung cancer identification using routine clinical and laboratory data[J]. Am J Respir Crit Care Med, 2021, 204(4): 445-453. DOI: 10.1164/rccm.202007-2791OC.
doi: 10.1164/rccm.202007-2791OC
|
[15] |
Mackay HJ, Brady MF, Oza AM, et al. Prognostic relevance of uncommon ovarian histology in women with stage Ⅲ/Ⅳ epithelial ovarian cancer[J]. Int J Gynecol Cancer, 2010, 20(6): 945-952. DOI: 10.1111/IGC.0b013e3181dd0110.
doi: 10.1111/IGC.0b013e3181dd0110
pmid: 20683400
|
[16] |
Kawakami E, Tabata J, Yanaihara N, et al. Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers[J]. Clin Cancer Res, 2019, 25(10): 3006-3015. DOI: 10.1158/1078-0432.CCR-18-3378..
doi: 10.1158/1078-0432.CCR-18-3378
pmid: 30979733
|
[17] |
Paik ES, Lee JW, Park JY, et al. Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods[J]. J Gynecol Oncol, 2019, 30(4): e65. DOI: 10.3802/jgo.2019.30.e65.
doi: 10.3802/jgo.2019.30.e65
|
[18] |
Hu J, Jiao X, Zhu L, et al. Establishment and verification of the nomogram that predicts the 3-year recurrence risk of epithelial ovarian carcinoma[J]. BMC Cancer, 2020, 20(1): 938. DOI: 10.1186/s12885-020-07402-2.
doi: 10.1186/s12885-020-07402-2
pmid: 32993522
|
[19] |
Ma J, Yang J, Jin Y, et al. Artificial intelligence based on blood biomarkers including CTCs predicts outcomes in epithelial ovarian cancer: a prospective study[J]. Onco Targets Ther, 2021, 14: 3267-3280. DOI: 10.2147/OTT.S307546.
doi: 10.2147/OTT.S307546
|
[20] |
谭金城. 上皮性卵巢癌术后复发转移预测模型的建立及验证[D]. 昆明: 昆明医科大学, 2022. DOI: 10.27202/d.cnki.gkmyc.2022.000731.
doi: 10.27202/d.cnki.gkmyc.2022.000731
|
[21] |
O'Shea AS. Clinical staging of ovarian cancer[J]. Methods Mol Biol, 2022, 2424: 3-10. DOI: 10.1007/978-1-0716-1956-8_1.
doi: 10.1007/978-1-0716-1956-8_1
pmid: 34918284
|
[22] |
杨莎, 杨晓华, 王苏华, 等. 老年肺癌胸腔镜手术后下肢深静脉血栓的危险因素分析及预测模型的建立和验证[J]. 国际肿瘤学杂志, 2022, 49(9): 532-536. DOI: 10.3760/cma.j.cn371439-20220621-00103.
doi: 10.3760/cma.j.cn371439-20220621-00103
|
[23] |
Shipe ME, Deppen SA, Farjah F, et al. Developing prediction models for clinical use using logistic regression: an overview[J]. J Thorac Dis, 2019, 11(Suppl 4): S574-S584. DOI: 10.21037/jtd.2019.01.25.
doi: 10.21037/jtd.2019.01.25
|