[1] |
Mitchell TM. Machine learning[M]. New York: McGraw-Hill, 1997.
|
[2] |
Ding H, Fawad M, Xu X, et al. A framework for identification and classification of liver diseases based on machine learning algorithms[J]. Front Oncol, 2022, 12: 1048348. DOI: 10.3389/fonc.2022.1048348.
doi: 10.3389/fonc.2022.1048348
|
[3] |
Wu Y, Yang X, Morris HL, et al. Noninvasive diagnosis of nonalcoholic steatohepatitis and advanced liver fibrosis using machine lear-ning methods: comparative study with existing quantitative risk scores[J]. JMIR Med Inform, 2022, 10(6): e36997. DOI: 10.2196/36997.
doi: 10.2196/36997
|
[4] |
Pei X, Deng Q, Liu Z, et al. Machine learning algorithms for predicting fatty liver disease[J]. Ann Nutr Metab, 2021, 77(1): 38-45. DOI: 10.1159/000513654.
doi: 10.1159/000513654
|
[5] |
Li J, Tao Y, Cong H, et al. Predicting liver cancers using skewed epidemiological data[J]. Artif Intell Med, 2022, 124: 102234. DOI: 10.1016/j.artmed.2021.102234.
doi: 10.1016/j.artmed.2021.102234
|
[6] |
Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics[J]. Nat Rev Genet, 2015, 16(6): 321-332. DOI: 10.1038/nrg3920.
doi: 10.1038/nrg3920
pmid: 25948244
|
[7] |
Han N, He J, Shi L, et al. Identification of biomarkers in nonalcoholic fatty liver disease: a machine learning method and experimental study[J]. Front Genet, 2022, 13: 1020899. DOI: 10.3389/fgene.2022.1020899.
doi: 10.3389/fgene.2022.1020899
|
[8] |
Mann M, Kumar C, Zeng WF, et al. Artificial intelligence for proteomics and biomarker discovery[J]. Cell Syst, 2021, 12(8): 759-770. DOI: 10.1016/j.cels.2021.06.006.
doi: 10.1016/j.cels.2021.06.006
pmid: 34411543
|
[9] |
Zhang S, Liu Y, Chen J, et al. Autoantibody signature in hepatocellular carcinoma using seromics[J]. J Hematol Oncol, 2020, 13(1): 85. DOI: 10.1186/s13045-020-00918-x.
doi: 10.1186/s13045-020-00918-x
|
[10] |
Streba CT, Ionescu M, Gheonea DI, et al. Contrast-enhanced ultrasonography parameters in neural network diagnosis of liver tumors[J]. World J Gastroenterol, 2012, 18(32): 4427-4434. DOI: 10.3748/wjg.v18.i32.4427.
doi: 10.3748/wjg.v18.i32.4427
|
[11] |
Turco S, Tiyarattanachai T, Ebrahimkheil K, et al. Interpretable machine learning for characterization of focal liver lesions by contrast-enhanced ultrasound[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2022, 69(5): 1670-1681. DOI: 10.1109/TUFFC.2022.3161719.
doi: 10.1109/TUFFC.2022.3161719
pmid: 35320099
|
[12] |
Căleanu CD, Sîrbu CL, Simion G. Deep neural architectures for contrast enhanced ultrasound (CEUS) focal liver lesions automated diagnosis[J]. Sensors (Basel), 2021, 21(12): 4126. DOI: 10.3390/s21124126.
doi: 10.3390/s21124126
|
[13] |
Nebbia G, Zhang Q, Arefan D, et al. Pre-operative microvascular invasion prediction using multi-parametric liver MRI radiomics[J]. J Digit Imaging, 2020, 33(6): 1376-1386. DOI: 10.1007/s10278-020-00353-x.
doi: 10.1007/s10278-020-00353-x
|
[14] |
Nakaura T, Higaki T, Awai K, et al. A primer for understanding radiology articles about machine learning and deep learning[J]. Diagn Interv Imaging, 2020, 101(12): 765-770. DOI: 10.1016/j.diii.2020.10.001.
doi: 10.1016/j.diii.2020.10.001
|
[15] |
Sandfort V, Yan K, Pickhardt PJ, et al. Data augmentation using generative adversarial networks (CycleGAN) to improve generali-zability in CT segmentation tasks[J]. Sci Rep, 2019, 9(1): 16884. DOI: 10.1038/s41598-019-52737-x.
doi: 10.1038/s41598-019-52737-x
pmid: 31729403
|
[16] |
Mulé S, Galletto Pregliasco A, Tenenhaus A, et al. Multiphase liver MRI for identifying the macrotrabecular-massive subtype of hepatocellular carcinoma[J]. Radiology, 2020, 295(3): 562-571. DOI: 10.1148/radiol.2020192230.
doi: 10.1148/radiol.2020192230
pmid: 32228294
|
[17] |
Mulé S, Lawrance L, Belkouchi Y, et al. Generative adversarial networks (GAN)-based data augmentation of rare liver cancers: the SFR 2021 artificial intelligence data challenge[J]. Diagn Interv Imaging, 2023, 104(1): 43-48. DOI: 10.1016/j.diii.2022.09.005.
doi: 10.1016/j.diii.2022.09.005
|
[18] |
Heusel M, Ramsauer H, Unterthiner T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA: Curran Associates Inc., 2017: 6629-6640. DOI: 10.5555/3295222.3295408.
doi: 10.5555/3295222.3295408
|
[19] |
Xu Q, Huang G, Yuan Y, et al. An empirical study on evaluation metrics of generative adversarial networks[DB/OL]. [2018-08-17][2023-02-19]. https://arxiv.org/abs/1806.07755v1.
|
[20] |
Teramoto T, Shinohara T, Takiyama A. Computer-aided classification of hepatocellular ballooning in liver biopsies from patients with NASH using persistent homology[J]. Comput Methods Programs Biomed, 2020, 195: 105614. DOI: 10.1016/j.cmpb.2020.105614.
doi: 10.1016/j.cmpb.2020.105614
|
[21] |
Matteoni CA, Younossi ZM, Gramlich T, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity[J]. Gastroenterology, 1999, 116(6): 1413-1419. DOI: 10.1016/S0016-5085(99)70506-8.
doi: 10.1016/s0016-5085(99)70506-8
pmid: 10348825
|
[22] |
Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides[J]. Hepatology, 2020, 72(6): 2000-2013. DOI: 10.1002/hep.31207.
doi: 10.1002/hep.31207
|
[23] |
Minerali E, Foil DH, Zorn KM, et al. Comparing machine learning algorithms for predicting drug-induced liver injury (DILI)[J]. Mol Pharm, 2020, 17(7): 2628-2637. DOI: 10.1021/acs.molpharmaceut.0c00326.
doi: 10.1021/acs.molpharmaceut.0c00326
|
[24] |
Chen M, Suzuki A, Thakkar S, et al. DILIrank: the largest refe-rence drug list ranked by the risk for developing drug-induced liver injury in humans[J]. Drug Discov Today, 2016, 21(4): 648-653. DOI: 10.1016/j.drudis.2016.02.015.
doi: 10.1016/j.drudis.2016.02.015
|
[25] |
Williams DP, Lazic SE, Foster AJ, et al. Predicting drug-induced liver injury with Bayesian machine learning[J]. Chem Res Toxicol, 2020, 33(1): 239-248. DOI: 10.1021/acs.chemrestox.9b00264.
doi: 10.1021/acs.chemrestox.9b00264
pmid: 31535850
|
[26] |
Aleo MD, Shah F, Allen S, et al. Moving beyond binary predictions of human drug-induced liver injury (DILI) toward contrasting relative risk potential[J]. Chem Res Toxicol, 2020, 33(1): 223-238. DOI: 10.1021/acs.chemrestox.9b00262.
doi: 10.1021/acs.chemrestox.9b00262
pmid: 31532188
|
[27] |
Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system[J]. Pharm Res, 2005, 22(1): 11-23. DOI: 10.1007/s11095-004-9004-4.
doi: 10.1007/s11095-004-9004-4
|
[28] |
Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis[J]. Lancet Oncol, 2009, 10(1): 35-43. DOI: 10.1016/S1470-2045(08)70284-5.
doi: 10.1016/S1470-2045(08)70284-5
pmid: 19058754
|
[29] |
Kim WR, Lake JR, Smith JM, et al. OPTN/SRTR 2017 annual data report: liver[J]. Am J Transplant, 2019, 19 Suppl 2: 184-283. DOI: 10.1111/ajt.15276.
doi: 10.1111/ajt.15276
pmid: 30811890
|
[30] |
He T, Fong JN, Moore LW, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J]. Comput Med Imaging Graph, 2021, 89: 101894. DOI: 10.1016/j.compmedimag.2021.101894.
doi: 10.1016/j.compmedimag.2021.101894
|