国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (5): 310-314.doi: 10.3760/cma.j.cn371439-20230227-00062

• 综述 • 上一篇    下一篇

机器学习在肝脏疾病中的应用:提升诊断、治疗和疗效评估

陈丰洋, 张巍()   

  1. 北部战区总医院肝胆胰甲状腺外科,沈阳 110016
  • 收稿日期:2023-02-27 修回日期:2023-04-01 出版日期:2023-05-08 发布日期:2023-06-27
  • 通讯作者: 张巍 E-mail:zhang_wei_1980@163.com
  • 基金资助:
    辽宁省重点研发联合计划项目(2020JH2/10300168);辽宁省自然科学基金医工联合项目(2022-YGJC-11);辽宁省科学技术计划(2021JH2/10300084)

Application of machine learning in liver disease: improving diagnosis, treatment, and efficacy evaluation

Chen Fengyang, Zhang Wei()   

  1. Department of Hepatobiliary Pancreatic Thyroid Surgery, General Hospital of Northern Theater Command, Shenyang 110016, China
  • Received:2023-02-27 Revised:2023-04-01 Online:2023-05-08 Published:2023-06-27
  • Contact: Zhang Wei E-mail:zhang_wei_1980@163.com
  • Supported by:
    Key Research and Development Project of Liaoning Province(2020JH2/10300168);Joint Program of Medical and Industrial of Liaoning Natural Science Foundation(2022-YGJC-11);Science and Technology Program of Liaoning Province(2021JH2/10300084)

摘要:

人工智能机器学习与传统统计学建立的预测模型相比具有一定的优势。目前,已有大量研究探讨机器学习在肝脏疾病中的应用,但机器学习算法的选择以及训练不同机器学习算法的步骤尚未达成统一。随着研究的不断深入,基于机器学习联合各组学建立的预测模型对提升肝脏疾病诊断、治疗以及疗效评估可发挥巨大作用。

关键词: 机器学习, 肝脏疾病

Abstract:

Compared with traditional statistical models, machine learning in artificial intelligence has certain advantages in establishing predictive models. Currently, a large amount of research has been conducted on the application of machine learning in liver diseases. However, there is still no unified approach for selection of machine learning algorithms and steps of training different machine learning algorithms. As research progresses, predictive models based on machine learning combined with various omics have great potential in improving the diagnosis, treatment, and efficacy evaluation of liver diseases.

Key words: Machine learning, Liver disease