[1] |
Grauers Wiktorin H, Aydin E, Hellstrand K, et al. NOX2-derived reactive oxygen species in cancer[J]. Oxid Med Cell Longev, 2020: 7095902. DOI: 10.1155/2020/7095902.
|
[2] |
Schröder K. NADPH oxidases: current aspects and tools[J]. Redox Biol, 2020, 34: 101512. DOI: 10.1016/j.redox.2020.101512.
|
[3] |
Vermot A, Petit-Härtlein I, Smith SME, et al. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology[J]. Antioxidants (Basel), 2021, 10(6): 890. DOI: 10.3390/antiox10060890.
|
[4] |
Xu L, Balzarolo M, Robinson EL, et al. NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction[J]. Cardiovasc Res, 2022, 118(14): 2973-2984. DOI: 10.1093/cvr/cvab349.
|
[5] |
Mohri H, Ninoyu Y, Sakaguchi H, et al. Nox3-derived superoxide in cochleae induces sensorineural hearing loss[J]. J Neurosci, 2021, 41(21): 4716-4731. DOI: 10.1523/JNEUROSCI.2672-20.2021.
|
[6] |
Trevelin SC, Shah AM, Lombardi G. Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator[J]. Immunol Lett, 2020, 221: 39-48. DOI: 10.1016/j.imlet.2020.02.009.
pmid: 32092360
|
[7] |
Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2023, 98(3): 502-526. DOI: 10.1002/ajh.26822.
pmid: 36594187
|
[8] |
Jones CL. NOX2: a determinant of acute myeloid leukemia survival[J]. Haematologica, 2022, 107(11): 2530-2531. DOI: 10.3324/haematol.2022.280677.
|
[9] |
Paolillo R, Boulanger M, Gâtel P, et al. The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias[J]. Haematologica, 2022, 107(11): 2562-2575. DOI: 10.3324/haematol.2021.279889.
pmid: 35172562
|
[10] |
Ijurko C, González-García N, Galindo-Villardón P, et al. A 29-gene signature associated with NOX2 discriminates acute myeloid leukemia prognosis and survival[J]. Am J Hematol, 2022, 97(4): 448-457. DOI: 10.1002/ajh.26477.
pmid: 35073432
|
[11] |
Robinson AJ, Hopkins GL, Rastogi N, et al. Reactive oxygen species drive proliferation in acute myeloid leukemia via the glycolytic regulator PFKFB3[J]. Cancer Res, 2020, 80(5): 937-949. DOI: 10.1158/0008-5472.CAN-19-1920.
pmid: 31862780
|
[12] |
Germon ZP, Sillar JR, Mannan A, et al. Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies[J]. Sci Signal, 2023, 16(778): eabp9586. DOI: 10.1126/scisignal.abp9586.
|
[13] |
Cao JY, Mansouri S, Frappier L. Changes in the nasopharyngeal carcinoma nuclear proteome induced by the EBNA1 protein of Epstein-Barr virus reveal potential roles for EBNA1 in metastasis and oxidative stress responses[J]. J Virol, 2012, 86(1): 382-394. DOI: 10.1128/JVI.05648-11.
pmid: 22013061
|
[14] |
Kim SM, Hur DY, Hong SW, et al. EBV-encoded EBNA1 regulates cell viability by modulating miR34a-NOX2-ROS signaling in gastric cancer cells[J]. Biochem Biophys Res Commun, 2017, 494(3/4): 550-555. DOI: 10.1016/j.bbrc.2017.10.095.
|
[15] |
Wang P, Shi Q, Deng WH, et al. Relationship between expression of NADPH oxidase 2 and invasion and prognosis of human gastric cancer[J]. World J Gastroenterol, 2015, 21(20): 6271-6279. DOI: 10.3748/wjg.v21.i20.6271.
|
[16] |
Wang Z, Tang T, Wang S, et al. Aloin inhibits the proliferation and migration of gastric cancer cells by regulating NOX2-ROS-mediated pro-survival signal pathways[J]. Drug Des Devel Ther, 2020, 14: 145-155. DOI: 10.2147/DDDT.S219247.
|
[17] |
You X, Ma M, Hou G, et al. Gene expression and prognosis of NOX family members in gastric cancer[J]. Onco Targets Ther, 2018, 11: 3065-3074. DOI: 10.2147/OTT.S161287.
|
[18] |
Luo M, Yang X, Chen HN, et al. Drug resistance in colorectal cancer: an epigenetic overview[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188623. DOI: 10.1016/j.bbcan.2021.188623.
|
[19] |
Banskota S, Regmi SC, Kim JA. NOX1 to NOX2 Switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7[J]. Mol Cancer, 2015, 14: 123. DOI: 10.1186/s12943-015-0379-0.
pmid: 26116564
|
[20] |
Takiguchi K, Shimizu H, Shoda K, et al. The expression and role of NADPH oxidase 2 in colon cancer[J]. Anticancer Res, 2023, 43(6): 2601-2608. DOI: 10.21873/anticanres.16427.
pmid: 37247898
|
[21] |
Guo Y, Han B, Luo K, et al. NOX2-ROS-HIF-1α signaling is critical for the inhibitory effect of oleanolic acid on rectal cancer cell proliferation[J]. Biomed Pharmacother, 2017, 85: 733-739. DOI: 10.1016/j.biopha.2016.11.091.
pmid: 27938946
|
[22] |
Waghela BN, Vaidya FU, Pathak C. Upregulation of NOX-2 and Nrf-2 promotes 5-fluorouracil resistance of human colon carcinoma (HCT-116) cells[J]. Biochemistry (Mosc), 2021, 86(3): 262-274. DOI: 10.1134/S0006297921030044.
pmid: 33838628
|
[23] |
Yang WH, Huang Z, Wu J, et al. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer[J]. Mol Cancer Res, 2020, 18(1): 79-90. DOI: 10.1158/1541-7786.MCR-19-0691.
|
[24] |
Yang WH, Chi JT. Hippo pathway effectors YAP/TAZ as novel determinants of ferroptosis[J]. Mol Cell Oncol, 2019, 7(1): 1699375. DOI: 10.1080/23723556.2019.1699375.
|
[25] |
Wang N, Song L, Xu Y, et al. Loss of scribble confers cisplatin resistance during NSCLC chemotherapy via Nox2/ROS and Nrf2/PD-L1 signaling[J]. EBioMedicine, 2019, 47: 65-77. DOI: 10.1016/j.ebiom.2019.08.057.
pmid: 31495720
|
[26] |
Zhan Y, Chen Q, Song Y, et al. Berbamine hydrochloride inhibits lysosomal acidification by activating Nox2 to potentiate chemotherapy-induced apoptosis via the ROS-MAPK pathway in human lung carcinoma cells[J]. Cell Biol Toxicol, 2023, 39(4): 1297-1317. DOI: 10.1007/s10565-022-09756-8.
|
[27] |
Zhao L, Chen X, Feng Y, et al. COX7A1 suppresses the viability of human non-small cell lung cancer cells via regulating autophagy[J]. Cancer Med, 2019, 8(18): 7762-7773. DOI: 10.1002/cam4.2659.
|
[28] |
Liu Y, Han D, Ma Q, et al. Prognostic value of NOX2 as a potential biomarker for lung adenocarcinoma using TCGA and clinical validation[J]. Mol Med Rep, 2023, 27(2): 48. DOI: 10.3892/mmr.2023.12935.
|
[29] |
Shimizu H, Katsurahara K, Inoue H, et al. NADPH oxidase 2 has a crucial role in cell cycle progression of esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2022, 29(13): 8677-8687. DOI: 10.1245/s10434-022-12384-5.
|
[30] |
Hu Y, Ye X, Wang R, et al. Current research progress in the role of reactive oxygen species in esophageal adenocarcinoma[J]. Transl Cancer Res, 2021, 10(3): 1568-1577. DOI: 10.21037/tcr-19-1985.
pmid: 35116481
|