国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (7): 424-428.doi: 10.3760/cma.j.cn371439-20201216-00081
周邓婧1, 姚颐1,2(), 宋启斌1,2(), 吴彬1, 肖梦霞1, 杨思琦1
收稿日期:
2020-12-16
修回日期:
2021-01-10
出版日期:
2021-07-08
发布日期:
2021-07-26
通讯作者:
姚颐,宋启斌
E-mail:yaoyi2018@whu.edu.cn;qibinsong@163.com
基金资助:
Zhou Dengjing1, Yao Yi1,2(), Song Qibin1,2(), Wu Bin1, Xiao Mengxia1, Yang Siqi1
Received:
2020-12-16
Revised:
2021-01-10
Online:
2021-07-08
Published:
2021-07-26
Contact:
Yao Yi,Song Qibin
E-mail:yaoyi2018@whu.edu.cn;qibinsong@163.com
Supported by:
摘要:
肿瘤细胞与肿瘤微环境(TME)关系密切。目前已知多种因素会改变TME影响肿瘤发展,然而TME的改变也离不开肿瘤细胞。越来越多的研究证实,调节TME是抗肿瘤治疗的关键,因此了解肿瘤细胞对TME的影响十分重要。
周邓婧, 姚颐, 宋启斌, 吴彬, 肖梦霞, 杨思琦. 肿瘤细胞对肿瘤微环境的影响[J]. 国际肿瘤学杂志, 2021, 48(7): 424-428.
Zhou Dengjing, Yao Yi, Song Qibin, Wu Bin, Xiao Mengxia, Yang Siqi. Effect of tumor cells on tumor microenvironment[J]. Journal of International Oncology, 2021, 48(7): 424-428.
[1] |
Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018, 24(5):541-550. DOI: 10.1038/s41591-018-0014-x.
doi: 10.1038/s41591-018-0014-x pmid: 29686425 |
[2] |
Strong AL, Pei DT, Hurst CG, et al. Obesity enhances the conversion of adipose-derived stromal/stem cells into carcinoma-associated fibroblast leading to cancer cell proliferation and progression to an invasive phenotype[J]. Stem Cells Int, 2017, 2017:9216502. DOI: 10.1155/2017/9216502.
doi: 10.1155/2017/9216502 pmid: 29527228 |
[3] | 董熠, 姚颐, 宋启斌, 等. 癌相关成纤维细胞的分化来源[J]. 国际肿瘤学杂志, 2017, 44(2):125-128. DOI: 10.3760/cma.j.issn.1673-422X.2017.02.012. |
[4] |
Wang L, Cao L, Wang H, et al. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway[J]. Oncotarget, 2017, 8(44):76116-76128. DOI: 10.18632/oncotarget.18814.
doi: 10.18632/oncotarget.v8i44 |
[5] |
Hardy SD, Shinde A, Wang WH, et al. Regulation of epithelial-mesenchymal transition and metastasis by TGF-β, P-bodies, and autophagy[J]. Oncotarget, 2017, 8(61):103302-103314. DOI: 10.18632/oncotarget.21871.
doi: 10.18632/oncotarget.v8i61 |
[6] |
Zhou P, Li B, Liu F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer[J]. Mol Cancer, 2017, 16(1):52. DOI: 10.1186/s12943-017-0624-9.
doi: 10.1186/s12943-017-0624-9 |
[7] |
Cazet AS, Hui MN, Elsworth BL, et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer[J]. Nat Commun, 2018, 9(1):2897. DOI: 10.1038/s41467-018-05220-6.
doi: 10.1038/s41467-018-05220-6 |
[8] |
Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3):579-596. DOI: 10.1084/jem.20162024.
doi: 10.1084/jem.20162024 |
[9] |
Ringuette GC, Bernard G, Tremblay S, et al. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFβ signaling[J]. Mol Cancer Res, 2018, 16(7):1196-1204. DOI: 10.1158/1541-7786.MCR-17-0784.
doi: 10.1158/1541-7786.MCR-17-0784 |
[10] |
Clocchiatti A, Ghosh S, Procopio MG, et al. Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation[J]. J Clin Invest, 2018, 128(12):5531-5548. DOI: 10.1172/JCI99159.
doi: 10.1172/JCI99159 |
[11] |
Cho C, Mukherjee R, Peck AR, et al. Cancer-associated fibroblasts downregulate type Ⅰ interferon receptor to stimulate intratumoral stromagenesis[J]. Oncogene, 2020, 39(38):6129-6137. DOI: 10.1038/s41388-020-01424-7.
doi: 10.1038/s41388-020-01424-7 |
[12] |
Kuo MC, Kuo PC, Mi Z. Myeloid zinc finger-1 regulates expression of cancer-associated fibroblast and cancer stemness profiles in breast cancer[J]. Surgery, 2019, 166(4):515-523. DOI: 10.1016/j.surg.2019.05.042.
doi: 10.1016/j.surg.2019.05.042 |
[13] |
Laklai H, Miroshnikova YA, Pickup MW, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression[J]. Nat Med, 2016, 22(5):497-505. DOI: 10.1038/nm.4082.
doi: 10.1038/nm.4082 |
[14] |
Xue J, Yu X, Xue L, et al. Intrinsic β-catenin signaling suppresses CD8+ T-cell infiltration in colorectal cancer[J]. Biomed Pharmacother, 2019, 115:108921. DOI: 10.1016/j.biopha.2019.108921.
doi: 10.1016/j.biopha.2019.108921 |
[15] |
Pistillo MP, Fontana V, Morabito A, et al. Soluble CTLA-4 as a favorable predictive biomarker in metastatic melanoma patients treated with ipilimumab: an Italian melanoma intergroup study[J]. Cancer Immunol Immunother, 2019, 68(1):97-107. DOI: 10.1007/s00262-018-2258-1.
doi: 10.1007/s00262-018-2258-1 |
[16] |
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19):1823-1833. DOI: 10.1056/NEJMoa1606774.
doi: 10.1056/NEJMoa1606774 |
[17] |
Whelan S, Ophir E, Kotturi MF, et al. PVRIG and PVRL2 are induced in cancer and inhibit CD8+ T-cell function[J]. Cancer Immunol Res, 2019, 7(2):257-268. DOI: 10.1158/2326-6066.CIR-18-0442.
doi: 10.1158/2326-6066.CIR-18-0442 |
[18] |
Duan S, Guo W, Xu Z, et al. Natural killer group 2D receptor and its ligands in cancer immune escape[J]. Mol Cancer, 2019, 18(1):29. DOI: 10.1186/s12943-019-0956-8.
doi: 10.1186/s12943-019-0956-8 |
[19] |
Zhang J, Larrocha PS, Zhang B, et al. Antibody targeting tumor-derived soluble NKG2D ligand sMIC provides dual co-stimulation of CD8 T cells and enables sMIC+ tumors respond to PD1/PD-L1 blockade therapy[J]. J Immunother Cancer, 2019, 7(1):223. DOI: 10.1186/s40425-019-0693-y.
doi: 10.1186/s40425-019-0693-y |
[20] |
Li R, Li H, Sun Q, et al. Indoleamine 2,3-dioxygenase regulates T cell activity through Vav1/Rac pathway[J]. Mol Immunol, 2017, 81:102-107. DOI: 10.1016/j.molimm.2016.11.018.
doi: 10.1016/j.molimm.2016.11.018 |
[21] |
Ehrlich AK, Pennington JM, Tilton S, et al. AhR activation increases IL-2 production by alloreactive CD4+ T cells initiating the differentiation of mucosal-homing Tim3+ Lag3+ Tr1 cells[J]. Eur J Immunol, 2017, 47(11):1989-2001. DOI: 10.1002/eji.201747121.
doi: 10.1002/eji.201747121 |
[22] |
Ham S, Lima LG, Lek E, et al. The impact of the cancer microenvironment on macrophage phenotypes[J]. Front Immunol, 2020, 11:1308. DOI: 10.3389/fimmu.2020.01308.
doi: 10.3389/fimmu.2020.01308 |
[23] |
Quero L, Hanser E, Manigold T, et al. TLR2 stimulation impairs anti-inflammatory activity of M2-like macrophages, generating a chimeric M1/M2 phenotype[J]. Arthritis Res Ther, 2017, 19(1):245. DOI: 10.1186/s13075-017-1447-1.
doi: 10.1186/s13075-017-1447-1 |
[24] |
Makita N, Hizukuri Y, Yamashiro K, et al. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration[J]. Int Immunol, 2015, 27(3):131-141. DOI: 10.1093/intimm/dxu090.
doi: 10.1093/intimm/dxu090 |
[25] |
Lavender N, Yang J, Chen SC, et al. The Yin/Yan of CCL2: a minor role in neutrophil anti-tumor activity in vitro but a major role on the outgrowth of metastatic breast cancer lesions in the lung in vivo[J]. BMC Cancer, 2017, 17(1):88. DOI: 10.1186/s12885-017-3074-2.
doi: 10.1186/s12885-017-3074-2 pmid: 28143493 |
[26] |
Kitamura T, Qian BZ, Soong D, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages[J]. J Exp Med, 2015, 212(7):1043-1059. DOI: 10.1084/jem.20141836.
doi: 10.1084/jem.20141836 |
[27] |
Wang Q, He Z, Huang M, et al. Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2ɑ[J]. Nat Commun, 2018, 9(1):559. DOI: 10.1038/s41467-018-03050-0.
doi: 10.1038/s41467-018-03050-0 |
[28] |
Pirro M, Schoof E, van Vliet SJ, et al. Glycoproteomic analysis of MGL-binding proteins on acute T-cell leukemia cells[J]. J Proteome Res, 2019, 18(3):1125-1132. DOI: 10.1021/acs.jproteome.8b00796.
doi: 10.1021/acs.jproteome.8b00796 |
[29] |
Swierczak A, Mouchemore KA, Hamilton JA, et al. Neutrophils: important contributors to tumor progression and metastasis[J]. Cancer Metastasis Rev, 2015, 34(4):735-751. DOI: 10.1007/s10555-015-9594-9.
doi: 10.1007/s10555-015-9594-9 |
[30] |
Shaul ME, Levy L, Sun J, et al. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: a transcriptomics analysis of pro- vs. antitumor TANs[J]. Oncoimmunology, 2016, 5(11):e1232221. DOI: 10.1080/2162402X.2016.1232221.
doi: 10.1080/2162402X.2016.1232221 |
[31] |
Andzinski L, Kasnitz N, Stahnke S, et al. Type Ⅰ IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human[J]. Int J Cancer, 2016, 138(8):1982-1993. DOI: 10.1002/ijc.29945.
doi: 10.1002/ijc.29945 pmid: 26619320 |
[32] |
Meyer MA, Baer JM, Knolhoff BL, et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance[J]. Nat Commun, 2018, 9(1):1250. DOI: 10.1038/s41467-018-03600-6.
doi: 10.1038/s41467-018-03600-6 |
[33] |
Martinek J, Wu TC, Cadena D, et al. Interplay between dendritic cells and cancer cells[J]. Int Rev Cell Mol Biol, 2019, 348:179-215. DOI: 10.1016/bs.ircmb.2019.07.008.
doi: S1937-6448(19)30071-1 pmid: 31810553 |
[34] |
Gringhuis SI, Kaptein TM, Wevers BA, et al. Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGN-dependent IL-27 production[J]. Nat Commun, 2014, 5:5074. DOI: 10.1038/ncomms6074.
doi: 10.1038/ncomms6074 pmid: 25278262 |
[35] | Karaman S, Leppanen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease[J]. Development, 2018, 145(14): dev151019. DOI: 10.1242/dev.151019. |
[36] |
Huang C, Chen Y. Lymphangiogenesis and colorectal cancer[J]. Saudi Med J, 2017, 38(3):237-244. DOI: 10.15537/smj.2017.3.16245.
doi: 10.15537/smj.2017.3.16245 |
[37] |
Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor[J]. Oncologist, 2015, 20(6):660-673. DOI: 10.1634/theoncologist.2014-0465.
doi: 10.1634/theoncologist.2014-0465 |
[38] |
Heinolainen K, Karaman S, D'Amico G, et al. VEGFR3 modulates vascular permeability by controlling VEGF/VEGFR2 signaling[J]. Circ Res, 2017, 120(9):1414-1425. DOI: 10.1161/CIRCRESAHA.116.310477.
doi: 10.1161/CIRCRESAHA.116.310477 |
[39] |
Liu Y, Li T, Hu D, et al. NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression[J]. Biochem Biophys Res Commun, 2016, 478(1):254-259. DOI: 10.1016/j.bbrc.2016.07.059.
doi: 10.1016/j.bbrc.2016.07.059 |
[40] |
Dobbs JL, Shin D, Krishnamurthy S, et al. Confocal fluorescence microscopy to evaluate changes in adipocytes in the tumor microenvironment associated with invasive ductal carcinoma and ductal carcinoma in situ[J]. Int J Cancer, 2016, 139(5):1140-1149. DOI: 10.1002/ijc.30160.
doi: 10.1002/ijc.30160 |
[41] |
Zhang M, Di Martino JS, Bowman RL, et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins[J]. Cancer Discov, 2018, 8(8):1006-1025. DOI: 10.1158/2159-8290.CD-17-1371.
doi: 10.1158/2159-8290.CD-17-1371 |
[42] |
Sakurai M, Miki Y, Takagi K, et al. Interaction with adipocyte stromal cells induces breast cancer malignancy via S100A7 upregulation in breast cancer microenvironment[J]. Breast Cancer Res, 2017, 19(1):70. DOI: 10.1186/s13058-017-0863-0.
doi: 10.1186/s13058-017-0863-0 pmid: 28629450 |
[43] |
Wei X, Li S, He J, et al. Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling[J]. Cell Commun Signal, 2019, 17(1):58. DOI: 10.1186/s12964-019-0373-z.
doi: 10.1186/s12964-019-0373-z |
[1] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[2] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[3] | 刘博翰, 黄俊星. 液体活检技术在食管鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 105-108. |
[4] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[5] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[6] | 李晨曦, 赵宏伟. 二次肿瘤细胞减灭术治疗初始减瘤手术不满意铂敏感复发性卵巢癌的预后及影响因素分析[J]. 国际肿瘤学杂志, 2023, 50(6): 342-347. |
[7] | 许萌, 姜伟, 朱海涛, 曹雄锋. 癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. |
[8] | 丁浩, 应劲涛, 付茂勇. CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235. |
[9] | 曹梦清, 徐志勇, 施毓婷, 王凯. 三级淋巴结构在肿瘤免疫微环境调节和抗肿瘤治疗中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 169-173. |
[10] | 徐良富, 李袁飞. MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[11] | 朱易, 陈健. 硫化氢在肿瘤发生发展中的作用机制及其供体抗肿瘤作用[J]. 国际肿瘤学杂志, 2023, 50(12): 729-733. |
[12] | 谢露露, 丁江华. 免疫治疗在晚期三阴性乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(11): 672-676. |
[13] | 陶红, 殷红, 罗宏, 陶佳瑜. 靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[14] | 马雪艳, 鲁历历, 孙鹏飞. 免疫微环境在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 47-50. |
[15] | 吴嘉钰, 刘加成. 孤立性磨玻璃结节样肺腺癌的影像组学研究进展[J]. 国际肿瘤学杂志, 2022, 49(8): 449-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||