Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (4): 212-215.doi: 10.3760/cma.j.cn371439-20200722-00042
• Reviews • Previous Articles Next Articles
Received:
2020-07-22
Revised:
2020-12-20
Online:
2021-04-08
Published:
2021-06-18
Contact:
Yuan Dongya
E-mail:dy62@163.com
Liu Saisai, Yuan Dongya. Regulation of IL-35, IL-39 and IL-27 in tumor microenvironment[J]. Journal of International Oncology, 2021, 48(4): 212-215.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1):7-34. DOI: 10.3322/caac.21551.
doi: 10.3322/caac.v69.1 |
[2] |
Teymouri M, Pirro M, Fallarino F, et al. IL-35, a hallmark of immune-regulation in cancer progression, chronic infections and inflammatory diseases[J]. Int J Cancer, 2018, 143(9):2105-2115. DOI: 10.1002/ijc.31382.
doi: 10.1002/ijc.v143.9 |
[3] |
Huang C, Li N, Li Z, et al. Tumour-derived interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression[J]. Nat Commun, 2017, 8:14035. DOI: 10.1038/ncomms14035.
doi: 10.1038/ncomms14035 |
[4] |
Wang K, Gong H, Chai R, et al. RETRACTED: aberrant frequency of IL-35 producing B cells in colorectal cancer patients[J]. Cytokine, 2018, 102:206-210. DOI: 10.1016/j.cyto.2017.10.011.
doi: S1043-4666(17)30316-2 pmid: 29054723 |
[5] |
Yang M, Zhang Z, Chen J, et al. Soluble fibrinogen-like protein 2 promotes the growth of hepatocellular carcinoma via attenuating dendritic cell-mediated cytotoxic T cell activity[J]. J Exp Clin Cancer Res, 2019, 38(1):351. DOI: 10.1186/s13046-019-1326-5.
doi: 10.1186/s13046-019-1326-5 |
[6] |
Hao S, Chen X, Wang F, et al. Breast cancer cell-derived IL-35 promotes tumor progression via induction of IL-35-producing induced regulatory T cells[J]. Carcinogenesis, 2018, 39(12):1488-1496. DOI: 10.1093/carcin/bgy136.
doi: 10.1093/carcin/bgy136 |
[7] |
Heim L, Kachler K, Siegmund R, et al. Increased expression of the immunosuppressive interleukin-35 in patients with non-small cell lung cancer[J]. Br J Cancer, 2019, 120(9):903-912. DOI: 10.1038/s41416-019-0444-3.
doi: 10.1038/s41416-019-0444-3 |
[8] |
Larousserie F, Kebe D, Huynh T, et al. Evidence for IL-35 expression in diffuse large B-cell lymphoma and impact on the patient's prognosis[J]. Front Oncol, 2019, 9:563. DOI: 10.3389/fonc.2019.00563.
doi: 10.3389/fonc.2019.00563 pmid: 31316915 |
[9] | Zhu J, Yang X, Wang Y, et al. Interleukin-35 is associated with the tumorigenesis and progression of prostate cancer[J]. Oncol Lett, 2019, 17(6):5094-5102. DOI: 10.3892/ol.2019.10208. |
[10] | Takahashi R, Macchini M, Sunagawa M, et al. Interleukin-1β-induced pancreatitis promotes pancreatic ductal adenocarcinoma via B lymphocyte-mediated immune suppression[J]. Gut, 2021: 70(2):330-341. DOI: 10.1136/gutjnl-2019-319912. |
[11] |
Zhang X, Zhang Z, Ju M, et al. Pretreatment with interleukin 35-engineered mesenchymal stem cells protected against lipopolysaccharide-induced acute lung injury via pulmonary inflammation suppression[J]. Inflammopharmacology, 2020, 28(5):1269-1281. DOI: 10.1007/s10787-020-00696-5.
doi: 10.1007/s10787-020-00696-5 |
[12] |
Li X, Fang P, Sun Y, et al. Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells[J]. Redox Biol, 2020, 28:101373. DOI: 10.1016/j.redox.2019.101373.
doi: 10.1016/j.redox.2019.101373 |
[13] |
Carvalho MI, Pires I, Prada J, et al. Assessing the interleukin 35 immunoexpression in malignant canine mammary tumors: association with clinicopathological parameters and prognosis[J]. Anticancer Res, 2019, 39(4):2077-2083. DOI: 10.21873/anticanres.13319.
doi: 10.21873/anticanres.13319 |
[14] |
Turnis ME, Sawant DV, Szymczak-Workman AL, et al. Interleukin-35 limits anti-tumor immunity[J]. Immunity, 2016, 44(2):316-329. DOI: 10.1016/j.immuni.2016.01.013.
doi: 10.1016/j.immuni.2016.01.013 |
[15] |
Zou JM, Qin J, Li YC, et al. IL-35 induces N2 phenotype of neutrophils to promote tumor growth[J]. Oncotarget, 2017, 8(20):33501-33514. DOI: 10.18632/oncotarget.16819.
doi: 10.18632/oncotarget.v8i20 |
[16] |
Lee CC, Lin JC, Hwang WL, et al. Macrophage-secreted interleukin-35 regulates cancer cell plasticity to facilitate metastatic colonization[J]. Nat Commun, 2018, 9(1): 3763. DOI: 10.1038/s41467-018-06268-0.
doi: 10.1038/s41467-018-06268-0 |
[17] |
Wang X, Liu X, Zhang Y, et al. Interleukin (IL)-39 [IL-23p19/Epstein-Barr virus-induced 3 (Ebi3)] induces differentiation/expansion of neutrophils in lupus-prone mice[J]. Clin Exp Immunol, 2016, 186(2):144-156. DOI: 10.1111/cei.12840.
doi: 10.1111/cei.12840 |
[18] |
Wang X, Wei Y, Xiao H, et al. A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in Lupus-like mice[J]. Eur J Immunol, 2016, 46(6):1343-1350. DOI: 10.1002/eji.201546095.
doi: 10.1002/eji.201546095 |
[19] |
Floss DM, Schönberg M, Franke M, et al. IL-6/IL-12 cytokine receptor shuffling of extra- and intracellular domains reveals canonical STAT activation via synthetic IL-35 and IL-39 signaling[J]. Sci Rep, 2017, 7(1): 15172. DOI: 10.1038/s41598-017-15173-3.
doi: 10.1038/s41598-017-15173-3 |
[20] | Manning AA, Zhao L, Zhu Z, et al. IL-39 acts as a friend to pancreatic cancer[J]. Med Oncol, 2019, 36(1): 12. DOI: 10.1007/s12032-018-1236-y. |
[21] | Guo Y, Cao W, Zhu Y. Immunoregulatory functions of the IL-12 family of cytokines in antiviral systems[J]. Viruses, 2019, 11(9): 772. DOI: 10.3390/v11090772. |
[22] |
Figueiredo ML, Figueiredo Neto M, Salameh JW, et al. Ligand-mediated targeting of cytokine interleukin-27 enhances its bioactivity in vivo[J]. Mol Ther Methods Clin Dev, 2020, 17:739-751. DOI: 10.1016/j.omtm.2020.03.022.
doi: 10.1016/j.omtm.2020.03.022 |
[23] | Carbotti G, Petretto A, Naschberger E, et al. Cytokine-induced guanylate binding protein 1 (GBP1) release from human ovarian cancer cancer cells[J]. Cancers(Basel), 2020, 12(2): 488. DOI: 10.3390/cancers12020488. |
[24] |
Le HT, Keslar K, Nguyen QT, et al. Interleukin-27 enforces regulatory T cell functions to prevent graft-versus-host disease[J]. Front Immunol, 2020, 11:181. DOI: 10.3389/fimmu.2020.00181.
doi: 10.3389/fimmu.2020.00181 |
[25] |
Figueiredo Neto M, Liu S, Salameh JW, et al. Interleukin-27 gene delivery targeting IL-6Rα-expressing cells as a stress response therapy[J]. Int J Mol Sci, 2020, 21(3): 1108. DOI: 10.3390/ijms21031108.
doi: 10.3390/ijms21031108 |
[26] |
Lavoie S, Chun E, Bae S, et al. Expression of free fatty acid receptor 2 by dendritic cells prevents their expression of interleukin 27 and is required for maintenance of mucosal barrier and immune response against colorectal tumors in mice[J]. Gastroenterology, 2020, 158(5):1359-1372.e9.DOI: 10.1053/j.gastro.2019.12.027.
doi: 10.1053/j.gastro.2019.12.027 |
[27] |
Hu A, Ding M, Zhu J, et al. Intra-tumoral delivery of IL-27 using adeno-associated virus stimulates anti-tumor immunity and enhances the efficacy of immunotherapy[J]. Front Cell Dev Biol, 2020, 8:210. DOI: 10.3389/fcell.2020.00210.
doi: 10.3389/fcell.2020.00210 |
[28] |
Hawley JE, Pan S, Figg WD, et al. Association between immunosuppressive cytokines and PSA progression in biochemically recurrent prostate cancer treated with intermittent hormonal therapy[J]. Prostate, 2020, 80(4):336-344. DOI: 10.1002/pros.23948.
doi: 10.1002/pros.v80.4 |
[29] |
Hemati M, Rasouli Nejad Z, Shokri MR, et al. IL-27 impact on NK cells activity: implication for a robust anti-tumor response in chronic lymphocytic leukemia[J]. Int Immunopharmacol, 2020, 82:106350. DOI: 10.1016/j.intimp.2020.106350.
doi: 10.1016/j.intimp.2020.106350 |
[30] | Rocha GA, de Melo FF, Cabral MMDA, et al. Interleukin-27 is abrogated in gastric cancer, but highly expressed in other Helicobacter pylori-associated gastroduodenal diseases[J]. Helicobacter, 2020, 25(1): e12667. DOI: 10.1111/hel.12667. |
[31] |
Manouchehri-Doulabi E, Abbaspour S, Rostami S, et al. Evaluating the mechanism underlying antitumor effect of interleukin 27 on B cells of chronic lymphocytic leukemia patients[J]. J Cell Physiol, 2020, 235(12):9424-9431. DOI: 10.1002/jcp.29747.
doi: 10.1002/jcp.v235.12 |
[32] |
Zhu J, Liu JQ, Shi M, et al. IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer immunotherapy[J]. JCI Insight, 2018, 3(7):e98745. DOI: 10.1172/jci.insight.98745.
doi: 10.1172/jci.insight.98745 |
[1] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[2] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[4] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[5] | Zhang Yuan, Bai Zhiyu, Li Qi, Feng Qinmei. Current status of research on exosomes in malignancies [J]. Journal of International Oncology, 2023, 50(8): 484-488. |
[6] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[7] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
[8] | Cao Mengqing, Xu Zhiyong, Shi Yuting, Wang Kai. Role of tertiary lymphoid structures in tumor immune microenvironment regulation and anti-tumor therapy [J]. Journal of International Oncology, 2023, 50(3): 169-173. |
[9] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[11] | Xie Lulu, Ding Jianghua. Progress of immunotherapy-based strategy in triple-negative breast cancer [J]. Journal of International Oncology, 2023, 50(11): 672-676. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[14] | Zhao Jianhao, Duan Yanchao. Research progress in the pathogenesis of extramedullary disease in multiple myeloma [J]. Journal of International Oncology, 2023, 50(1): 55-59. |
[15] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||