Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (7): 445-448.doi: 10.3760/cma.j.cn371439-20201019-00086
• Gut Microbiota and Tumor • Previous Articles
Received:
2020-10-19
Revised:
2021-04-13
Online:
2021-07-08
Published:
2021-07-26
Contact:
Guo Zhi
E-mail:guozhi77@126.com
Supported by:
Wei Liya, Guo Zhi. Gut microbiota and hematological malignancies[J]. Journal of International Oncology, 2021, 48(7): 445-448.
[1] |
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease[J]. N Engl J Med, 2016, 375(24):2369-2379. DOI: 10.1056/NEJMra1600266.
doi: 10.1056/NEJMra1600266 |
[2] |
Josefsdottir KS, Baldridge MT, Kadmon CS, et al. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota[J]. Blood, 2017, 129(6):729-739. DOI: 10.1182/blood-2016-03-708594.
doi: 10.1182/blood-2016-03-708594 pmid: 27879260 |
[3] |
Staffas A, Burgos da Silva M, Slingerland AE, et al. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice[J]. Cell Host Microbe, 2018, 23(4):447-457, e4. DOI: 10.1016/j.chom.2018.03.002.
doi: S1931-3128(18)30099-4 pmid: 29576480 |
[4] |
Jain S, Ward JM, Shin DM, et al. Associations of autoimmunity, immunodeficiency, lymphomagenesis, and gut microbiota in mice with knockins for a pathogenic autoantibody[J]. Am J Pathol, 2017, 187(9):2020-2033. DOI: 10.1016/j.ajpath.2017.05.017.
doi: 10.1016/j.ajpath.2017.05.017 |
[5] |
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation[J]. Cell, 2014, 157(1):121-141. DOI: 10.1016/j.cell.2014.03.011.
doi: 10.1016/j.cell.2014.03.011 |
[6] |
Schloss PD, Westcott SL. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis[J]. Appl Environ Microbiol, 2011, 77(10):3219-3226. DOI: 10.1128/AEM.02810-10.
doi: 10.1128/AEM.02810-10 |
[7] |
Vijayvargiya P, Jeraldo PR, Thoendel MJ, et al. Application of me-tagenomic shotgun sequencing to detect vector-borne pathogens in clinical blood samples[J]. PLoS One, 2019, 14(10):e0222915. DOI: 10.1371/journal.pone.0222915.
doi: 10.1371/journal.pone.0222915 |
[8] |
Dulanto Chiang A, Dekker JP. From the pipeline to the bedside: advances and challenges in clinical metagenomics[J]. J Infect Dis, 2020, 221(Suppl 3):S331-S340. DOI: 10.1093/infdis/jiz151.
doi: 10.1093/infdis/jiz151 |
[9] |
Ten Hoopen P, Finn RD, Bongo LA, et al. The metagenomic data life-cycle: standards and best practices[J]. Gigascience, 2017, 6(8):1-11. DOI: 10.1093/gigascience/gix047.
doi: 10.1093/gigascience/gix047 pmid: 28637310 |
[10] |
Song Y, Gyarmati P. Optimized detection of bacteria in bloodstream infections[J]. PLoS One, 2019, 14(6):e0219086. DOI: 10.1371/journal.pone.0219086.
doi: 10.1371/journal.pone.0219086 |
[11] |
Song Y, Giske CG, Gille-Johnson P, et al. Nuclease-assisted suppression of human DNA background in sepsis[J]. PLoS One, 2014, 9(7):e103610. DOI: 10.1371/journal.pone.0103610.
doi: 10.1371/journal.pone.0103610 |
[12] |
Gijavanekar C, Strych U, Fofanov Y, et al. Rare target enrichment for ultrasensitive PCR detection using cot-rehybridization and duplex-specific nuclease[J]. Anal Biochem, 2012, 421(1):81-85. DOI: 10.1016/j.ab.2011.11.010.
doi: 10.1016/j.ab.2011.11.010 pmid: 22155054 |
[13] |
Hakim H, Dallas R, Wolf J, et al. Gut microbiome composition predicts infection risk during chemotherapy in children with acute lymphoblastic leukemia[J]. Clin Infect Dis, 2018, 67(4):541-548. DOI: 10.1093/cid/ciy153.
doi: 10.1093/cid/ciy153 pmid: 29518185 |
[14] |
Tims S, Derom C, Jonkers DM, et al. Microbiota conservation and BMI signatures in adult monozygotic twins[J]. ISME J, 2013, 7(4):707-717. DOI: 10.1038/ismej.2012.146.
doi: 10.1038/ismej.2012.146 |
[15] |
Nearing JT, Connors J, Whitehouse S, et al. Infectious complications are associated with alterations in the gut microbiome in pediatric patients with acute lymphoblastic leukemia[J]. Front Cell Infect Microbiol, 2019, 9:28. DOI: 10.3389/fcimb.2019.00028.
doi: 10.3389/fcimb.2019.00028 |
[16] |
Montassier E, Gastinne T, Vangay P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome[J]. Aliment Pharmacol Ther, 2015, 42(5):515-528. DOI: 10.1111/apt.13302.
doi: 10.1111/apt.2015.42.issue-5 |
[17] |
Kaysen A, Heintz-Buschart A, Muller EEL, et al. Integrated meta-omic analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic hematopoietic stem cell transplantation[J]. Transl Res, 2017, 186:79-94, e1. DOI: 10.1016/j.trsl.2017.06.008.
doi: S1931-5244(17)30069-5 pmid: 28686852 |
[18] | Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018, 361:k2179. DOI: 10.1136/bmj.k2179. |
[19] |
Galloway-Peña JR, SmithD P, Sahasrabhojane P, et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia[J]. Cancer, 2016, 122(14):2186-2196. DOI: 10.1002/cncr.30039.
doi: 10.1002/cncr.30039 pmid: 27142181 |
[20] |
Bindels LB, Neyrinck AM, Salazar N, et al. Non digestible oligosaccharides modulate the gut microbiota to control the development of leukemia and associated cachexia in mice[J]. PLoS One, 2015, 10(6):e0131009. DOI: 10.1371/journal.pone.0131009.
doi: 10.1371/journal.pone.0131009 |
[21] |
Feld R. Bloodstream source in cancer patients with febrile neutropenia[J]. Int J Antimicrob Agents, 2008, 32 Suppl 1: S30-S33. DOI: 10.1016/j.ijantimicag.2008.06.017.
doi: 10.1016/j.ijantimicag.2008.06.017 |
[22] |
Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes[J]. Nat Rev Immunol, 2011, 11(7):445-456. DOI: 10.1038/nri3007.
doi: 10.1038/nri3007 |
[23] |
Galloway-Peña JR, Smith DP, Sahasrabhojane P, et al. Characte-rization of oral and gut microbiome temporal variability in hospitalized cancer patients[J]. Genome Med, 2017, 9(1):21. DOI: 10.1186/s13073-017-0409-1.
doi: 10.1186/s13073-017-0409-1 pmid: 28245856 |
[24] |
Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell, 2016, 167(5):1339-1353, e21. DOI: 10.1016/j.cell.2016.10.043.
doi: 10.1016/j.cell.2016.10.043 |
[25] |
Lähteenmäki K, Wacklin P, Taskinen M, et al. Haematopoietic stem cell transplantation induces severe dysbiosis in intestinal microbiota of paediatric ALL patients[J]. Bone Marrow Transplant, 2017, 52(10):1479-1482. DOI: 10.1038/bmt.2017.168.
doi: 10.1038/bmt.2017.168 |
[26] |
Ingham AC, Kielsen K, Cilieborg MS, et al. Specific gut micro-biome members are associated with distinct immune markers in pediatric allogeneic hematopoietic stem cell transplantation[J]. Microbiome, 2019, 7(1):131. DOI: 10.1186/s40168-019-0745-z.
doi: 10.1186/s40168-019-0745-z |
[27] |
Kusakabe S, Fukushima K, Maeda T, et al. Pre- and post-serial metagenomic analysis of gut microbiota as a prognostic factor in patients undergoing haematopoietic stem cell transplantation[J]. Br J Haematol, 2020, 188(3):438-449. DOI: 10.1111/bjh.16205.
doi: 10.1111/bjh.v188.3 |
[28] | Peled JU, Devlin SM, Staffas A, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation[J]. J Clin Oncol, 2017, 35(15):1650-1659. DOI: 10.1200/JCO.2016.70.3348. |
[29] |
Khoruts A, Hippen KL, Lemire AM, et al. Toward revision of antimicrobial therapies in hematopoietic stem cell transplantation: target the pathogens, but protect the indigenous microbiota[J]. Transl Res, 2017, 179:116-125. DOI: 10.1016/j.trsl.2016.07.013.
doi: 10.1016/j.trsl.2016.07.013 |
[30] |
Montassier E, Al-Ghalith GA, Ward T, et al. Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection[J]. Genome Med, 2016, 8(1):49. DOI: 10.1186/s13073-016-0301-4.
doi: 10.1186/s13073-016-0301-4 pmid: 27121964 |
[31] |
Biagi E, Zama D, Rampelli S, et al. Early gut microbiota signature of aGvHD in children given allogeneic hematopoietic cell transplantation for hematological disorders[J]. BMC Med Genomics, 2019, 12(1):49. DOI: 10.1186/s12920-019-0494-7.
doi: 10.1186/s12920-019-0494-7 |
[32] |
Reyna-Figueroa J, Barrón-Calvillo E, García-Parra C, et al. Pro-biotic supplementation decreases chemotherapy-induced gastrointestinal side effects in patients with acute leukemia[J]. J Pediatr Hematol Oncol, 2019, 41(6):468-472. DOI: 10.1097/MPH.000000-0000001497.
doi: 10.1097/MPH.0000000000001497 |
[33] |
Bindels LB, Beck R, Schakman O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One, 2012, 7(6):e37971. DOI: 10.1371/journal.pone.0037971.
doi: 10.1371/journal.pone.0037971 |
[34] |
Wei W, Sun W, Yu S, et al. Butyrate production from high-fiber diet protects against lymphoma tumor[J]. Leuk Lymphoma, 2016, 57(10):2401-2408. DOI: 10.3109/10428194.2016.1144879.
doi: 10.3109/10428194.2016.1144879 |
[35] | 中国抗癌协会肿瘤与微生态专业委员会. 肠道微生态与造血干细胞移植相关性中国专家共识[J]. 国际肿瘤学杂志, 2021, 48(3):129-135. DOI: 10.3760/cma.j.cn371439-20210202-00027. |
[36] |
McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)[J]. Clin Infect Dis, 2018, 66(7):e1-e48. DOI: 10.1093/cid/cix1085.
doi: 10.1093/cid/cix1085 |
[37] |
Innes AJ, Mullish BH, Fernando F, et al. Faecal microbiota transplant: a novel biological approach to extensively drug-resistant organism-related non-relapse mortality[J]. Bone Marrow Transplant, 2017, 52(10):1452-1454. DOI: 10.1038/bmt.2017.151.
doi: 10.1038/bmt.2017.151 |
[38] |
Biliński J, Grzesiowski P, Muszyński J, et al. Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host[J]. Arch Immunol Ther Exp (Warsz), 2016, 64(3):255-258. DOI: 10.1007/s00005-016-0387-9.
doi: 10.1007/s00005-016-0387-9 |
[39] |
de Castro CG Jr, Ganc AJ, Ganc RL, et al. Fecal microbiota transplant after hematopoietic SCT: report of a successful case[J]. Bone Marrow Transplant, 2015, 50(1):145. DOI: 10.1038/bmt.2014.212.
doi: 10.1038/bmt.2014.212 |
[40] |
Kaito S, Toya T, Yoshifuji K, et al. Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease[J]. Blood Adv, 2018, 2(22):3097-3101. DOI: 10.1182/bloodadvances.2018024968.
doi: 10.1182/bloodadvances.2018024968 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[4] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[5] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[6] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[7] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[8] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[9] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[10] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[11] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[12] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[13] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[14] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing. Progress of radiotherapy in oligometastatic non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[15] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||