Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (4): 236-239.doi: 10.3760/cma.j.cn371439-20190923-00009
• Reviews • Previous Articles Next Articles
Received:
2019-09-23
Revised:
2019-10-27
Online:
2020-04-08
Published:
2020-05-26
Contact:
Yan Ying
E-mail:yanyingdoctor@sina.com
Supported by:
Li Guanglie, Yan Ying. Radiosensitivity markers of non-small cell lung cancer[J]. Journal of International Oncology, 2020, 47(4): 236-239.
[1] |
Chen W, Zheng R, Baade PD , et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132. DOI: 10.3322/caac.21338.
doi: 10.3322/caac.21338 |
[2] |
Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015[J]. CA Cancer J Clin, 2015,65(1):5-29. DOI: 10.3322/caac.21254.
doi: 10.3322/caac.21254 |
[3] | Murugan AK. mTOR: Role in cancer, metastasis and drug resistance[J]. Semin Cancer Biol, 2019, pii: S1044-579X(18) 30135-4. DOI: 10.1016/j.semcancer.2019.07.003. |
[4] |
Chen Y, Li W, Peng P , et al. mTORC1 inhibitor RAD001 (everolimus) enhances non-small cell lung cancer cell radiosensitivity in vitro via suppressing epithelial-mesenchymal transition[J]. Acta Pharmacol Sin, 2019,40(8):1085-1094. DOI: 10.1038/s41401-019-0215-y.
doi: 10.1038/s41401-019-0215-y |
[5] |
Zhao L, Wang DL, Liu Y , et al. Histone acetyltransferase hMOF promotes S phase entry and tumorigenesis in lung cancer[J]. Cell Signal, 2013,25(8):1689-1698. DOI: 10.1016/j.cellsig.2013.04.006.
doi: 10.1016/j.cellsig.2013.04.006 |
[6] |
Li N, Tian GW, Tang LR , et al. hMOF reduction enhances radiosensitivity through the homologous recombination pathway in non-small-cell lung cancer[J]. Onco Targets Ther, 2019,12:3065-3075. DOI: 10.2147/OTT.S192568.
doi: 10.2147/OTT |
[7] |
Torok JA, Oh P, Castle KD , et al. Deletion of Atm in tumor but not endothelial cells improves radiation response in a primary mouse model of lung adenocarcinoma[J]. Cancer Res, 2019,79(4):773-782. DOI: 10.1158/0008-5472.CAN-17-3103.
doi: 10.1158/0008-5472.CAN-17-3103 |
[8] |
Zhong X, Luo G, Zhou X , et al. Rad51 in regulating the radiosensitivity of non-small cell lung cancer with different epidermal growth factor receptor mutation status[J]. Thoracic Cancer, 2016,7(1):50-60. DOI: 10.1111/1759-7714.12274.
doi: 10.1111/1759-7714.12274 |
[9] |
Yin ZJ, Jin FG, Liu TG , et al. Overexpression of STAT3 potentiates growth, survival, and radioresistance of non-small-cell lung cancer (NSCLC) cells[J]. J Surg Res, 2011,171(2):675-683. DOI: 10.1016/j.jss.2010.03.053.
doi: 10.1016/j.jss.2010.03.053 |
[10] |
Wang M, Meng B, Liu Y , et al. MiR-124 inhibits growth and enhances radiation-induced apoptosis in non-small cell lung cancer by inhibiting STAT3[J]. Cell Physiol Biochem, 2017,44(5):2017-2028. DOI: 10.1159/000485907.
doi: 10.1159/000485907 |
[11] |
Hu C, Zhuang W, Qiao Y , et al. Effects of combined inhibition of STAT3 and VEGFR2 pathways on the radiosensitivity of non-small-cell lung cancer cells[J]. Onco Targets Ther, 2019,12:933-944. DOI: 10.2147/OTT.S186559.
doi: 10.2147/OTT |
[12] |
Klein C, Dokic I, Mairani A , et al. Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation[J]. Radiat Oncol, 2017,12(1):208. DOI: 10.1186/s13014-017-0939-0.
doi: 10.1186/s13014-017-0939-0 |
[13] |
Wang G, Xiao L, Wang F , et al. Hypoxia inducible factor-1α/B-cell lymphoma 2 signaling impacts radiosensitivity of H1299 non-small cell lung cancer cells in a normoxic environment[J]. Radiat Environ Biophys, 2019,58(3):439-448. DOI: 10.1007/s00411-019-00802-4.
doi: 10.1007/s00411-019-00802-4 |
[14] |
Ikezawa Y, Sakakibara-Konishi J, Mizugaki H , et al. Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer[J]. Int J Clin Oncol, 2017,22(1):59-69. DOI: 10.1007/s10147-016-1031-8.
doi: 10.1007/s10147-016-1031-8 |
[15] |
Xu J, Patel NH, Saleh T , et al. Differential radiation sensitivity in p53 wild-type and p53-deficient tumor cells associated with senescence but not apoptosis or (nonprotective) autophagy[J]. Radiat Res, 2018,190(5):538-557. DOI: 10.1667/RR15099.1.
doi: 10.1667/RR15099.1 |
[16] | Jung IL, Kang HJ, Kim KC , et al. PTEN/pAkt/p53 signaling pathway correlates with the radioresponse of non-small cell lung cancer[J]. Int J Mol Med, 2010,25(4):517-523. DOI: 10.3892/ijmm_00000372. |
[17] |
Chen QN, Wei CC, Wang ZX , et al. Long non-coding RNAs in anti-cancer drug resistance[J]. Oncotarget, 2017,8(1):1925-1936. DOI: 10.18632/oncotarget.12461.
doi: 10.18632/oncotarget.v8i1 |
[18] | Yang YR, Zang SZ, Zhong CL , et al. Increased expression of the lncRNA PVT1 promotes tumorigenesis in non-small cell lung cancer[J]. Int J Clin Exp Pathol, 2014,7(10):6929-6935. |
[19] | Liu AM, Zhu Y, Huang ZW , et al. Long noncoding RNA FAM201A involves in radioresistance of non-small-cell lung cancer by enhancing EGFR expression via miR-370[J]. Eur Rev Med Pharmacol Sci, 2019,23(13):5802-5814. DOI: 10.26355/eurrev_201907_18319. |
[20] | Yang X, Zhang W, Cheng SQ , et al. High expression of lncRNA GACAT3 inhibits invasion and metastasis of non-small cell lung cancer to enhance the effect of radiotherapy[J]. Eur Rev Med Pharmacol Sci, 2018,22(5):1315-1322. DOI: 10.26355/eurrev_201803_14473. |
[21] |
Xue Y, Ni T, Jiang Y , et al. Long noncoding RNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer[J]. Oncol Res, 2017,25(8):1305-1316. DOI: 10.3727/096504017-X14850182723737.
doi: 10.3727/096504017X14850182723737 |
[22] |
Jiang LP, He CY, Zhu ZT . Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene[J]. Oncotarget, 2017,8(14):23675-23689. DOI: 10.18632/oncotarget.15644.
doi: 10.18632/oncotarget.v8i14 |
[23] |
Chen X, Xu Y, Liao X , et al. Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer[J]. Tumour Biol, 2016,37(9):11927-11936. DOI: 10.1007/s13277-016-5052-8.
doi: 10.1007/s13277-016-5052-8 |
[24] |
Guo Y, Sun W, Gong T , et al. miR-30a radiosensitizes non-small cell lung cancer by targeting ATF1 that is involved in the phosphorylation of ATM[J]. Oncol Rep, 2017,37(4):1980-1988. DOI: 10.3892/or.2017.5448.
doi: 10.3892/or.2017.5448 |
[25] | Shen Z, Wu X, Wang Z , et al. Effect of miR-18a overexpression on the radiosensitivity of non-small cell lung cancer[J]. Int J Clin Exp Pathol, 2015,8(1):643-648. |
[26] |
Liu G, Li YI, Gao X . Overexpression of microRNA-133b sensitizes non-small cell lung cancer cells to irradiation through the inhibition of glycolysis[J]. Oncol Lett, 2016,11(4):2903-2908. DOI: 10.3892/ol.2016.4316.
doi: 10.3892/ol.2016.4316 |
[27] |
Provencio M, Sánchez A, Garrido P , et al. New molecular targeted therapies integrated with radiation therapy in lung cancer[J]. Clin Lung Cancer, 2010,11(2):91-97. DOI: 10.3816/CLC.2010.n.012.
doi: 10.3816/CLC.2010.n.012 |
[28] |
Chinnaiyan P, Huang S, Vallabhaneni G , et al. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva)[J]. Cancer Res, 2005,65(8):3328-3335. DOI: 10.1158/0008-5472.CAN-04-3547.
doi: 10.1158/0008-5472.CAN-04-3547 |
[29] |
Ma H, Bi J, Liu T , et al. Icotinib hydrochloride enhances the effect of radiotherapy by affecting DNA repair in colorectal cancer cells[J]. Oncol Rep, 2015,33(3):1161-1170. DOI: 10.3892/or.2014.3699.
doi: 10.3892/or.2014.3699 |
[30] |
Xie B, Sun L, Cheng Y , et al. Epidermal growth factor receptor gene mutations in non-small-cell lung cancer cells are associated with increased radiosensitivity in vitro[J]. Cancer Manag Res, 2018,10:3551-3560. DOI: 10.2147/CMAR.S165831.
doi: 10.2147/CMAR |
[1] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[2] | Wu Jiali, Zhang Jiahui, Zhang Ping, Xiao Xinyue, Li Rui, Zhang Hongyu. Mechanism of Bcl-2 BH4 selective inhibitor BDA-366 on NK/T cell lymphoma cells [J]. Journal of International Oncology, 2023, 50(7): 413-418. |
[3] | Zhu Siyu, Wang Xuehong, Li Wenqian, Liu Shu. Level of serum FABP1 and its relationship with Helicobacter pylori infection in patients with gastric cancer [J]. Journal of International Oncology, 2023, 50(6): 336-341. |
[4] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[5] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[6] | Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas [J]. Journal of International Oncology, 2022, 49(6): 357-361. |
[7] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing. MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2 [J]. Journal of International Oncology, 2022, 49(4): 193-198. |
[8] | Xu Lu, Long Jinhua, Jin Feng, Wu Weili. Clinical significance of expression of tumor immunogenic cell death related molecules [J]. Journal of International Oncology, 2022, 49(2): 106-110. |
[9] | Jin Jiahui, Chen Cunhai, Ma Xuezhen. Effects of radiation-associated miRNA in radiotherapy for breast cancer [J]. Journal of International Oncology, 2022, 49(12): 735-738. |
[10] | Jing Wenjun, Zhao Wenwen, Feng Qingqing, Zhao Wenfei, Zhao Lili, Zhang Xue, Wei Hongmei. Molecular basis and clinical prospect of the miR-34 family for the treatment of gastric cancer [J]. Journal of International Oncology, 2022, 49(11): 681-686. |
[11] | Luo Liyun, Lai Canhui, Liang Renpei, Yang Aiwu, Lin Zhimin. Correlation between the expressions of miR-524-5p and SOX9 in advanced gastric cancer and their influences on chemotherapy efficacy and prognosis [J]. Journal of International Oncology, 2022, 49(1): 45-50. |
[12] | Hong Anlan, Cao Meng, Wang Yan, Fang Fang. Research progress on lncRNAs as members of ceRNA network in melanoma [J]. Journal of International Oncology, 2022, 49(1): 61-64. |
[13] | Liu Pei, Pu Jiaze, Huang Wen, Wang Fei. Expression differences of miR-200c, miR-19a and miR-155 in gefitinib sensitive and drug resistant NSCLC patients and their effects on prognosis [J]. Journal of International Oncology, 2021, 48(7): 409-414. |
[14] | Wang Yang, Liu Qian, Long Hui, Wu Qingming. Research status of fecal detection for colorectal cancer markers [J]. Journal of International Oncology, 2021, 48(7): 441-444. |
[15] | Cheng Yiming, Li Gang, Wang Zhenming, Lyu Qianwen, Li Shirong. Value of serum miR-196a-5p and miR-105-5p in differential diagnosis of benign and malignant pulmonary nodules [J]. Journal of International Oncology, 2021, 48(5): 282-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||