| [1] | 
																						 
											  Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward[J]. Nat Rev Cancer, 2021, 21(10): 669-680. DOI: 10.1038/s41568-021-00378-6. 
											 												 
																									doi: 10.1038/s41568-021-00378-6
																																					pmid: 34272515
																							 											 | 
										
																													
																						| [2] | 
																						 
											  Vaupel P, Multhoff G. Revisiting the warburg effect: historical dogma versus current understanding[J]. J Physiol, 2021, 599(6): 1745-1757. DOI: 10.1113/JP278810. 
											 												 
																									doi: 10.1113/JP278810
																																			 											 | 
										
																													
																						| [3] | 
																						 
											  Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al.  Cancer metabolism: a therapeutic perspective[J]. Nat Rev Clin Oncol, 2017, 14(1): 11-31. DOI: 10.1038/nrclinonc.2016.60. 
											 												 
																									doi: 10.1038/nrclinonc.2016.60
																																					pmid: 27141887
																							 											 | 
										
																													
																						| [4] | 
																						 
											  Pérez-Escuredo J, Van Hée VF, Sboarina M, et al.  Monocarboxy-late transporters in the brain and in cancer[J]. Biochim Biophys Acta, 2016, 1863(10): 2481-2497. DOI: 10.1016/j.bbamcr.2016.03.013. 
											 												 
																									doi: 10.1016/j.bbamcr.2016.03.013
																																					pmid: 26993058
																							 											 | 
										
																													
																						| [5] | 
																						 
											  Payen VL, Mina E, Van Hée VF, et al.  Monocarboxylate transpor-ters in cancer[J]. Mol Metab, 2020, 33: 48-66. DOI: 10.1016/j.molmet.2019.07.006. 
											 												 
																									doi: 10.1016/j.molmet.2019.07.006
																																			 											 | 
										
																													
																						| [6] | 
																						 
											  Wang N, Jiang X, Zhang S, et al.  Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates[J]. Cell, 2021, 184(2): 370-383. e13. DOI: 10.1016/j.cell.2020.11.043. 
											 												 
																									doi: 10.1016/j.cell.2020.11.043
																																					pmid: 33333023
																							 											 | 
										
																													
																						| [7] | 
																						 
											  Faubert B, Li KY, Cai L, et al.  Lactate metabolism in human lung tumors[J]. Cell, 2017, 171(2): 358-371. e9. DOI: 10.1016/j.cell.2017.09.019. 
											 												 
																									doi: 10.1016/j.cell.2017.09.019
																																			 											 | 
										
																													
																						| [8] | 
																						 
											  Mantovani A, Marchesi F, Malesci A, et al.  Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. DOI: 10.1038/nrclinonc.2016.217. 
											 												 
																									doi: 10.1038/nrclinonc.2016.217
																																					pmid: 28117416
																							 											 | 
										
																													
																						| [9] | 
																						 
											  Colegio OR, Chu NQ, Szabo AL, et al.  Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513(7519): 559-563. DOI: 10.1038/nature13490. 
											 												 
																									doi: 10.1038/nature13490
																																			 											 | 
										
																													
																						| [10] | 
																						 
											  Chen P, Zuo H, Xiong H, et al.  Gpr132 sensing of lactate medi-ates tumor-macrophage interplay to promote breast cancer meta-stasis[J]. Proc Natl Acad Sci U S A, 2017, 114(3): 580-585. DOI: 10.1073/pnas.1614035114. 
											 												 
																									doi: 10.1073/pnas.1614035114
																																			 											 | 
										
																													
																						| [11] | 
																						 
											  Wei C, Yang C, Wang S, et al.  Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64. DOI: 10.1186/s12943-019-0976-4. 
											 												 
																									doi: 10.1186/s12943-019-0976-4
																																			 											 | 
										
																													
																						| [12] | 
																						 
											  Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598. DOI: 10.1038/nrc.2016.73. 
											 												 
																									doi: 10.1038/nrc.2016.73
																																					pmid: 27550820
																							 											 | 
										
																													
																						| [13] | 
																						 
											  Kogure A, Naito Y, Yamamoto Y, et al.  Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts[J]. PLoS One, 2020, 15(6): e0234613. DOI: 10.1371/journal.pone.0234613. 
											 												 
																									doi: 10.1371/journal.pone.0234613
																																			 											 | 
										
																													
																						| [14] | 
																						 
											  Fitzgerald G, Soro-Arnaiz I, De Bock K. The warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer[J]. Front Cell Dev Biol, 2018, 6: 100. DOI: 10.3389/fcell.2018.00100. 
											 												 
																									doi: 10.3389/fcell.2018.00100
																																					pmid: 30255018
																							 											 | 
										
																													
																						| [15] | 
																						 
											  Sun S, Li H, Chen J, et al.  Lactic acid: no longer an inert and end-product of glycolysis[J]. Physiology (Bethesda), 2017, 32(6): 453-463. DOI: 10.1152/physiol.00016.2017. 
											 												 
																									doi: 10.1152/physiol.00016.2017
																																			 											 | 
										
																													
																						| [16] | 
																						 
											  Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206: 107451. DOI: 10.1016/j.pharmthera.2019.107451. 
											 												 
																									doi: 10.1016/j.pharmthera.2019.107451
																																			 											 | 
										
																													
																						| [17] | 
																						 
											  Deng F, Zhou R, Lin C, et al. Tumor-secreted dickkopf2 accele-rates aerobic glycolysis and promotes angiogenesis in colorectal cancer[J]. Theranostics, 2019, 9(4): 1001-1014. DOI: 10.7150/thno.30056. 
											 												 
																									doi: 10.7150/thno.30056
																																			 											 | 
										
																													
																						| [18] | 
																						 
											  Yang J, Jiang Y, He R, et al.  DKK2 impairs tumor immunity infiltration and correlates with poor prognosis in pancreatic ductal adenocarcinoma[J]. J Immunol Res, 2019, 2019: 8656282. DOI: 10.1155/2019/8656282. 
											 												 
																									doi: 10.1155/2019/8656282
																																			 											 | 
										
																													
																						| [19] | 
																						 
											  Hu J, Wang Z, Chen Z, et al.  DKK2 blockage-mediated immunotherapy enhances anti-angiogenic therapy of Kras mutated colorectal cancer[J]. Biomed Pharmacother, 2020, 127: 110229. DOI: 10.1016/j.biopha.2020.110229. 
											 												 
																									doi: 10.1016/j.biopha.2020.110229
																																			 											 | 
										
																													
																						| [20] | 
																						 
											  Hayes C, Donohoe CL, Davern M, et al.  The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment[J]. Cancer Lett, 2021, 500: 75-86. DOI: 10.1016/j.canlet.2020.12.021. 
											 												 
																									doi: 10.1016/j.canlet.2020.12.021
																																			 											 | 
										
																													
																						| [21] | 
																						 
											  Brand A, Singer K, Koehl GE, et al.  LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells[J]. Cell Metab, 2016, 24(5): 657-671. DOI: 10.1016/j.cmet.2016.08.011. 
											 												 
																									doi: 10.1016/j.cmet.2016.08.011
																																			 											 | 
										
																													
																						| [22] | 
																						 
											  Bae EA, Seo H, Kim IK, et al.  Roles of NKT cells in cancer immunotherapy[J]. Arch Pharm Res, 2019, 42(7): 543-548. DOI: 10.1007/s12272-019-01139-8. 
											 												 
																									doi: 10.1007/s12272-019-01139-8
																																			 											 | 
										
																													
																						| [23] | 
																						 
											  de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, et al.  Lactate in the regulation of tumor microenvironment and therapeutic approaches[J]. Front Oncol, 2019, 9: 1143. DOI: 10.3389/fonc.2019.01143. 
											 												 
																									doi: 10.3389/fonc.2019.01143
																																					pmid: 31737570
																							 											 | 
										
																													
																						| [24] | 
																						 
											  Raychaudhuri D, Bhattacharya R, Sinha BP, et al.  Lactate indu-ces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells[J]. Front Immunol, 2019, 10: 1878. DOI: 10.3389/fimmu.2019.01878. 
											 												 
																									doi: 10.3389/fimmu.2019.01878
																																					pmid: 31440253
																							 											 | 
										
																													
																						| [25] | 
																						 
											  Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer[J]. Nat Rev Clin Oncol, 2019, 16(10): 601-620. DOI: 10.1038/s41571-019-0222-4. 
											 												 
																									doi: 10.1038/s41571-019-0222-4
																																			 											 | 
										
																													
																						| [26] | 
																						 
											  Wang JX, Choi SYC, Niu X, et al.  Lactic acid and an acidic tumor microenvironment suppress anticancer immunity[J]. Int J Mol Sci, 2020, 21(21): 8363. DOI: 10.3390/ijms21218363. 
											 												 
																									doi: 10.3390/ijms21218363
																																			 											 | 
										
																													
																						| [27] | 
																						 
											  Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy[J]. Pharmacol Res, 2019, 150: 104511. DOI: 10.1016/j.phrs.2019.104511. 
											 												 
																									doi: 10.1016/j.phrs.2019.104511
																																			 											 | 
										
																													
																						| [28] | 
																						 
											  Chen X, Hao B, Li D, et al.  Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis[J]. J Pineal Res, 2021, 71(2): e12755. DOI: 10.1111/jpi.12755. 
											 												 
																									doi: 10.1111/jpi.12755
																																			 											 | 
										
																													
																						| [29] | 
																						 
											  Shen S, Yao T, Xu Y, et al.  CircECE1 activates energy meta-bolism in osteosarcoma by stabilizing c-Myc[J]. Mol Cancer, 2020, 19(1): 151. DOI: 10.1186/s12943-020-01269-4. 
											 												 
																									doi: 10.1186/s12943-020-01269-4
																																			 											 | 
										
																													
																						| [30] | 
																						 
											  Ippolito L, Morandi A, Giannoni E, et al.  Lactate: a metabolic driver in the tumour landscape[J]. Trends Biochem Sci, 2019, 44(2): 153-166. DOI: 10.1016/j.tibs.2018.10.011. 
											 												 
																									doi: S0968-0004(18)30227-5
																																					pmid: 30473428
																							 											 |